
Ithaca Sidewalks: A Physical, Geometric, Clustering,

Algorithmic Approach

Calvin Chen, Dang Pham, William Xu

November 18, 2019

Contents

1 Executive Summary

2 Problem Statement 1

3 Notation 1

4 Assumptions 2

4.1 Sidewalk Slabs . 2

4.2 Causes of Stress . 3

4.3 Slab Repair . 4

5 Priority Score Algorithm 4

5.1 Characteristic Lifetime of a Concrete Slab . 4

5.2 Source of Stresses . 4

5.2.1 Thermal Stress . 5

5.2.2 Pedestrian-Caused Stress . 5

5.2.3 Flowing Water-Induced Stress . 5

5.2.4 Tree Root Growth-Related Stress . 6

5.2.5 All Together Now . 6

5.3 First-Order Approximation . 6

5.4 Formalism . 7

5.5 Data and Implementation . 7

5.6 Results . 9

6 Optimal Contracts and Clustering 9

6.1 k -means . 11

6.2 Gaussian Mixture . 12

6.3 Results . 14

2019 CMCM C. Chen, D. Pham, & W. Xu

7 Optimizing Slab Repair Costs 15

7.1 Clarifications & Interpretations . 15

7.2 Setup . 15

7.3 Two-Slab Case . 16

7.4 Generalized Algorithms for Arbitrary Slabs . 19

8 Validity & Robustness Testing 22

8.1 Priority Score Perturbation . 22

8.2 Weight of Clustering . 23

8.3 Optimizing Slab Repair Strategy . 24

9 Strengths & Weaknesses 25

9.1 Priority Score . 25

9.2 Optimal Contracts and Clustering . 25

9.3 Optimizing Slab Repair Costs . 26

10 Conclusions & Future Work 26

A Python Code 29

Abstract

In this manuscript, we use a physical approach to determine the characteristic lifetime of a

concrete slab. Using this, the population density of Ithaca in the day and night, and the total

number of concrete slabs in a city block, we calculate the priority score of each city block. We

then clustered the city blocks by using the proximity of both physical distance and priority score

to minimize the transition cost, and therefore, the overall construction costs. Lastly, we used a

geometric approach inspired by concepts from special relativity to derive the constraining surfaces

on the solution space of the two-slab problem. Generalization to arbitrary number of slabs is then

established with proposal of 2 O(N2) algorithm to compute the optimal repair strategy.

2019 CMCM C. Chen, D. Pham, & W. Xu

1 Executive Summary

Dear Mr. John Licitra, City of Ithaca Sidewalk Manager,

Tasked with helping the Ithaca Sidewalk Improvement team, we tackle some very important prob-

lems that are crucial in the goal of improving the sidewalks in Ithaca: determine areas requiring

attention, grouping areas of concerns for construction crews, and finding solutions to fix sidewalks

through raising, cutting, or replacing slabs.

Understanding that the city of Ithaca has been using an ad-hoc solution to determine priority score

of areas in Ithaca, we seek to develop a model of priority score that is based on physical laws. We analyze

all possible physical phenomena that can affect a sidewalk slab and found that only the population

density and number of slabs in each city block affects the priority score. So, we use population data,

Ithaca street map, locations of bus stops, government buildings, and schools to develop a priority

score map that reflects the real features of Ithaca city layout and the activities of Ithacans. With this

map, we determine that there are three hot spot regions that require high frequency maintenance care:

Collegetown, the Commons, and the area around Ithaca High School.

For our next task, to assign regions of the city to each construction crew, we used basic machine

learning techniques with human-assistance to find optimal contiguous regions for the crews. Here, we

find four contiguous, optimal regions to assign to construction crews that turn out to be quite similar

to the existing areas defined by the Ithaca Sidewalk Improvement program.

Then, we developed algorithms for determining the least costly set of repair operations to fully

fix sidewalks. Again, using motivation from physics, we develop constraints and explore all possible

solutions. We find two fast, inexpensive algorithms that come close to finding the best solution.

For the first two tasks, the largest limiting factor on our proposed solutions is by far the lack of data.

Having higher resolution population data and having more easily processible data on environmental

conditions throughout the city of Ithaca would allow us to broaden and refineour implementation.

Furthermore, our clustering of city blocks requires minor human assistance to find the best clustering

solution, which implies some degree subjectivity and lack of automation. In addition, the two algorithms

we develop for the last task, although fast, are not always guaranteed to be the optimal solution, but

only close to optimal.

With better data from the city of Ithaca, we can perform the analyses in this paper again, but with

greater resolution. We can draw specific routes for construction crews, create a map of maintenance

frequency for each street, and compile a list of repair actions for each street.

Despite the countless improvements that could be made, our modeling and methods provide superb

sidewalk-servicing solutions to the city of Ithaca, generating concrete results that bring us ever closer

to a sidewalk utopia – where sidewalks are bountiful and smooth.

Sincerely,

Calvin Chen, Dang Pham, & William Xu

2019 CMCM C. Chen, D. Pham, & W. Xu

2 Problem Statement

We are tasked with addressing the sidewalk catastrophe in Ithaca and proposing solutions on how to

best identify and repair damaged sidewalks. Sidewalks can be damaged due to many different causes,

ranging from natural and environmental to human. Individual sidewalk slabs must comply with the

requirements set by the Americans with Disabilities Act (ADA). Due to the limited budget, noncom-

pliant slabs must be fixed as cost-effectively as possible once they are reported by the public through

complaints. Additionally, population-dense areas, schools, bus stops, and government buildings must

be prioritized which deciding which sidewalks to repair first. For the first task, we are commissioned

to present a prioritization scheme that indicates the order in which blocks of the city of Ithaca should

be repaired.

The logistics of construction must also be carefully managed. As it is costly to send construction

crews jumping around Ithaca to repair the most urgent sidewalks here and there, we must present

regions where construction crews can be deployed to minimize the costs due to moving equipment.

This is the second task.

Once a construction crew is deployed to its assigned domain, the specific repair methods must be

carefully considered to select the ones fit for the job that also keep costs down. Then, for the third

task, we are charged with determining the best course of action (or lack thereof) for each slab along a

city block, given all information about the sidewalk slabs along that block.

Concerns with rising costs, flat revenues, and other detrimental circumstances lends the City of

Ithaca to also task us with projecting budget increases over the course of the next 25 years. This is

the fourth task.

Recognizing that as undergraduates we only have so much free time on our hands, the City of Ithaca

requests that we consider three out of the four tasks presented above. In this paper, we discuss and

address the first three, hoping to confront and tackle the disaster of devastated sidewalks in the City

of Ithaca.

3 Notation

• τ : characteristic lifetime of a concrete slab

• σ: stress exerted on a concrete slab

– σT : thermal stress

– σW : stress from pedestrians’ weight

– σS: shear stress of fluid flowing along an inclined surface

– σR: stress due to tree root growth

• E: Young’s modulus

• α: coefficient of thermal expansion

• T : temperature

1

2019 CMCM C. Chen, D. Pham, & W. Xu

• n: number of people on a slab

• m: mass of a person

• g: gravitational acceleration

• A: area of a slab

• ρ: density of fluid

• d: depth of fluid

• θ: running angle of a slab

• ϕ: cross angle of a slab

• z: vertical height of the center of the surface of the slab perpendicular to and from the surface of

the street

• 1/Γ: characteristic time of a destructive tree root growth event

• P : priority score

• N : population density

– Nday: population density in the day

– Nnight: population density at night

• nslab: average number of slabs in a city block

4 Assumptions

City blocks: since our implementation requires the population map of Ithaca and we only have that

data on a grid of 9× 14 cells, we are restricted to a city block at that resolution. Thus, our city block

is not the usual definition of a street block, but rather a city cell as shown in Fig. 3b, 3a.

4.1 Sidewalk Slabs

1. We assume that all concrete sidewalk slabs have the same consistency and are made of the same

uniform material, i.e. uniform concrete.

2. We assume all sidewalks in Ithaca are one slab wide.

3. We assume that all slabs are 4 ft × 4 ft, to comply with the requirement (2) of the ADA, from

personal experience, and out of simplicity.

4. We assume that all slabs are 5 inches thick, since they in reality vary from 4− 6 inches thick [1].

2

2019 CMCM C. Chen, D. Pham, & W. Xu

5. We assume that the x and y positions of the slabs are irrelevant, since the stresses we consider

largely will not displace slabs in these directions. More importantly, the ADA compliance re-

quirements do not consider relative x and y displacement of slabs in its sidewalk compliance

requirements, so we can ignore them. Additionally, ADA requirement (2) is always satisfied,

since we assume all sidewalk slabs to be installed as 4 ft × 4 ft, and various stresses would not

cause them to be less than 4 ft wide.

6. We assume that noncompliance with the ADA due to various sources of stress occurs relatively

sparsely, such that at any given point in time, the percentage of noncompliant slabs is small.

Then, we can model the breakage of slabs as a Poisson process.

7. As per the City of Ithaca Sidewalk Improvement Program [2, 3], Cornell University manages its

own sidewalks and walkways, so we do not consider the entire Cornell University campus in our

analysis.

4.2 Causes of Stress

We assume there are four primary source of stress exerted on a concrete slab: thermal stress, pedestrian-

caused stress, flowing water-induced stress, and tree root growth-related stress [4, 5].

1. We assume that the thermal stress is caused solely by thermal expansion and contraction of the

concrete slab itself, and not due to adjacent non-concrete materials expanding and contracting

(e.g. water freezing, soil expanding and contracting). Although the other causes of thermal stress

are likely not negligible, we make this assumption for clarity and conciseness of our analysis.

Additionally, assuming these other materials are randomly and uniformly distributed throughout

Ithaca (this is largely the case for water and soil), we find in Sec. 5 that the thermal stress is a

constant across all slabs anyway, so this assumption is in practice, irrelevant.

2. We assume that the soil is uniform in composition and water content throughout Ithaca for

simplicity and due to time constraints, even though this is not the case [6].

3. We assume that Ithaca is small enough to approximate the spatial temperature distribution as

uniform.

4. The average weight of a human in North America is 80kg [7].

5. We assume that excessive weight loads are sufficiently rare occurrences that they have a negligible

contribution to the total stress on a sidewalk slab.

6. We define a tree root growth event to be a change in the tree roots underneath a sidewalk slab

that would apply some stress on the slab, whether that is an increase in root mass that pushes

up on the slab in certain areas, or a root decay that causes a downward force to act on part of

the slab.

7. We assume that the density of trees throughout Ithaca is constant. We can see this visually in

the City of Ithaca’s interactive map of all of the trees in Ithaca [8].

3

2019 CMCM C. Chen, D. Pham, & W. Xu

8. We treat tree root growth as a stochastic process, but since we assume a random, uniform

distribution, it does not depend on location. Thus, we can model tree root growth with a

characteristic time for one occurrence of growth.

4.3 Slab Repair

Throughout Sec. 7, we make the small angle approximation that a 2% slope is equivalent to 1/48.

5 Priority Score Algorithm

First, we identify the contributions to the damage of the physical condition of the slabs. Then, we in-

clude population density, which incorporates all of the other factors that play into the priority score. As

discussed in Sec. 5.5, the proximity to schools, bus stops, and government building is incorporated into

the population density. Additionally, we assume that the number of complaints is directly proportional

to the population density, since if there are more people, there are more likely to be more complaints

about broken slabs. Thus, population density and physical condition of the slabs are sufficient to

describe the priority of a city block.

5.1 Characteristic Lifetime of a Concrete Slab

Experiments have shown that repeated stress on a concrete slab can cause it to break [9]. Therefore,

we assume that a concrete slab can endure a fixed amount of stress over its lifetime, or in other words,∫ τ

0

σ(t)dt = const.

where τ is the lifetime of a concrete slab and σ(t) is the stress exerted on the slab as a function of time.

Thus, if we average σ(t) over the life time and express that as σ̄, we can write

τ ∝ 1

σ̄
.

5.2 Source of Stresses

We identified the four primary sources of stress on a concrete slab as the following:

1. Thermal expansion and contraction

2. Pedestrians’ weight

3. Water flowing down a inclined surface (shear stress)

4. Tree root growth

4

2019 CMCM C. Chen, D. Pham, & W. Xu

5.2.1 Thermal Stress

Thermal stress is stress caused by a change in temperature of a material. This stress can lead to

fracture or plastic deformation. A material will expand or contract depending on the material’s thermal

expansion coefficient. As long as the material is free to move, it can expand or contract freely without

generating stress. Once this material (in our case, the concrete sidewalk slabs) is attached to a rigid

body at one end, thermal stress can be produced. The thermal stress σT can be calculated from the

following formula [10]:

σT (t) = Eα∆T (t)

where E is the Young’s modulus of the material, α is the coefficient of thermal expansion of the material,

and ∆T (t) is the temperature difference as a function of time.

The Young’s modulus measures the “stiffness” of a material, or how resistant to deformation a

material is. The Young’s modulus of concrete is typically in the range of 20–30 GPa [11]. The coefficient

of thermal expansion measures the change in linear size of a material under heating and cooling. The

typical coefficient of thermal expansion of a concrete is around 10−5 ◦C−1 [12]. The averaged annual

temperature variation is around 25◦C and the averaged diurnal temperature variation is around 10◦C

in Ithaca [13]. Using these values, we can estimate σ̄T = Eα∆T̄ . Estimate ∆T̄ to be around 1◦C, then

σ̄T is around 2×105–3×105 Pa (cf. atmospheric pressure, approx. 105 Pa).

5.2.2 Pedestrian-Caused Stress

The stress due to pedestrians’ weight, denoted σW can be calculated using the following formula:

σW (t) =
n(t)mg

A

where n(t) is the number of people standing on a slab at a time t, m is the weight of one person,

g ≈ 10 m/s2 is the gravitational acceleration, and A is the area of a slab. With the average weight of

Americans at 80 kg [7], and the slab size (4′ × 4′ ≈ 1.5 m2), we can estimate σ̄W = n̄mg/A. Estimate

n̄ to be 1 (i.e. assume in the worse case that there is on average 1 person standing on every slab at

every point in time). Then, σ̄W is around 500 Pa.

5.2.3 Flowing Water-Induced Stress

The shear stress of a liquid flowing down an inclined surface, denoted σS, can be calculated according

to the formula in [14] simplified using the free-body diagram in Fig. 1:

σS(t) = ρgd(t) sin θ

where ρ is the density of the fluid, g ≈ 10 m/s2 is the gravitational acceleration, d is the depth of the

fluid, and θ is the inclination. For water (ρ = 1000 kg/m3), we can estimate σ̄S = ρgd̄ sin θ. Estimate

d̄ = 1 cm, then for a slope of 10%, σ̄S is around 10 Pa.

5

2019 CMCM C. Chen, D. Pham, & W. Xu

Figure 1: Free-body diagram of a volume of liquid flowing down an inclined surface. The shear stress

σS can be derived from equating the shear stress with the parallel component of gravity.

5.2.4 Tree Root Growth-Related Stress

Let the characteristic time for one occurrence of destructive tree root growth be 1/Γ. Thus, we can

view the tree root growth-related stress, denoted σR, as a sum of Dirac delta functions:

σR(t) = c
∞∑
k=1

δ(t− k

Γ
)

where c is a constant that measures the total stress released in one tree root growth event. Therefore,

the average stress σ̄R is cΓ.

5.2.5 All Together Now

Thus, combining all four of the stresses, we arrive at the formula for calculating the characteristic

lifetime of a concrete slab:

τ ∝ 1

σ̄T + σ̄W + σ̄S + σ̄R

.

5.3 First-Order Approximation

In principle, σ̄T (x, y) will be a function of position if the temperature is not uniform across Ithaca.

Additionally, σ̄W (N) will be a function of population density N , σ̄S(θ) will be a function of the slope

of the slab, and σ̄R(x, y) will be a function of tree density across Ithaca. However, since we assume

that Ithaca is small enough to approximate the spatial temperature distribution as uniform, σ̄T is then

a constant. Moreover, because we assume that the tree density is constant across Ithaca, σ̄R is also a

constant.

From Sec. 5.2, we can see that the typical value of σ̄T is at least 2 orders of magnitude larger than

that of σ̄W and is at least 4 orders of magnitude larger than that of σ̄S. Therefore, we can approximate

6

2019 CMCM C. Chen, D. Pham, & W. Xu

τ as the following:

τ(N, θ) ∝ 1

σ̄T + σ̄R

+O
Å

σ̄W

σ̄T + σ̄R

ã
= const.+O

Å
σ̄W

σ̄T + σ̄R

ã
Thus, to the first order, the characteristic lifetime of a concrete slab is just a constant across Ithaca.

5.4 Formalism

We assert that the priority score should be proportional to the probability that one of the slabs in

the city blocks fails to comply with the ADA. We assume that this failure is a Poisson process (see

Sec. 4), so the probability of an individual slab failing is simply the inverse of the lifetime 1/τ of a

slab. Therefore, the probability of any one of the slabs failing in a city block will be the sum of this

probability over all slabs in the block.

We also assume that the number of complaints the Ithaca government will receive is directly pro-

portional to the population density in the block, since the more people there are, the more likely a

person will discover slab failures in a block. Therefore, the priority score will also be proportional to

the population density of the city block.

Thus, we define the priority score P of a city block as

P = N
∑
slabs

1

τ

Using our approximation that τ is a constant from Sec. 5.3 and our assumption that the population

density is equal to the average of day-time population density and night-time population density N =

(Nday +Nnight)/2. Denote the total number of concrete slabs in a city block as nslabs, we can rewrite

P ∝ (Nday +Nnight)nslabs.

Note that the proportionality constant does not matter, since it is the same for all city blocks, and

the priority score is a relative value for comparison between city blocks.

5.5 Data and Implementation

Roads of Ithaca are created using the Python library osmnx using road data from OpenStreetMap.

With this, we create the map of Ithaca streets (shown in Fig. 2 below), calculate the length of the road,

and subsequently how many slabs of sidewalk per street (using the fact that a slab is 4 ft in length).

The Ithaca population map is a 9 × 14 grid of data taken from CensusViewer [15] and Pham et al

[16], shown in Fig. 3 below. All of these maps are restricted within the rectangular region bounded by

latitude, 42.4613 < x < 42.4278, and longitude, −76.5216 < y < −76.47.

For the day population Nday, we use schools, bus stops, and government buildings. The number of

each type of building is obtained from OpenStreetMap via the Python library osmnx. The population

values for each are as follows:

• Each school has approximately 400 students, except for Ithaca high school, which has 1360

students [17, 18].

7

2019 CMCM C. Chen, D. Pham, & W. Xu

Figure 2: Street map of Ithaca. Blue dots are nodes where streets start and end.

• A bus stop serves on average 30 people per day (this is an estimate).

• Ithaca has 303 government employees [19]. Dividing this over all the government buildings gives

us about 34 employees per government building.

The Ithaca day population for each cell at location (i, j) in the 9× 14 grid is:

Nday,i,j = 400Nschool,i,j + 30Nbus stop,i,j + 34Ngovernment,i,j

where Nschool,i,j, Nbus stop,i,j, and Ngovernment,i,j are the number of schools, bus stops, and government

buildings in a cell. Note aside from Ithaca high school, we consider there to be 400 students per school.

We count post offices, the town hall, the courthouse, police stations, and fire stations as government

buildings. Note that we only find these buildings in cells that do not contain Cornell. Thus, this day

population map excludes Cornell.

For the night population Nnight, we use the Ithaca population map. This population includes Cornell

students living in Collegetown (where the city does maintain sidewalk conditions).

The software implementation is as follows:

1. Retrieve the coordinates of all roads in Ithaca, and calculate the number of slabs each road has

using its length (Fig. 2).

2. Discretize the Ithaca road map into a 9× 14 grid of cells. Calculate the number of slabs in each

cell to get nslabs,i,j.

3. Retrieve the location and population of all of Ithaca’s schools, bus stops, and government build-

ings. Calculate Nday,i,j in each cell (Fig. 3a).

4. Use data from the Ithaca population map to get Nnight,i,j (Fig. 3b).

5. Calculate the priority score for each cell using the formalism developed in the previous section.

This gives us the priority score matrix, as desired. See Fig. 4.

8

2019 CMCM C. Chen, D. Pham, & W. Xu

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8

Ithaca Day Population

0

200

400

600

800

1000

1200

1400

(a) Ithaca day population Nday. The one yellow cell

corresponds to Ithaca High School, which has the

highest daytime population.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8

Ithaca Night Population

0

200

400

600

800

1000

(b) Ithaca night populationNnight. The yellow regions

correspond to the Commons and Collegetown.

Figure 3: Ithaca population during the day and night. The color scale is the number of people in that

cell. The red dots are located in cells where population calculations were excluded (Cornell and Cayuga

Lake are ignored). Comparing these two plots with Fig. 2, we can see how each cell corresponds to a

region in Ithaca.

5.6 Results

The priority score map is shown in Fig. 4. Each cell represents a city block, as defined in Sec. 4.

There are a few interesting observations to notice. First, per our definition, the priority score is in

units of population/time. Thus, the priority score is a direct metric of the frequency with which a

region requires sidewalk maintenance, i.e. the priority map depicts regions based off of how often it

needs attention. Second, by comparing with Fig. 2, we notice that there are two main regions requiring

attention. The small yellow region that requires the most attention corresponds to Collegetown, and

the slightly larger green area that requires the second most attention corresponds to the Commons.

This makes sense because these are areas with greater population density. Third, the deep purple areas

are either Cornell, Cayuga Lake, or very low population places. Again, this makes sense since these

are either areas that do not require regular maintenance due to lack of population, or areas where the

City of Ithaca does not manage sidewalks.

6 Optimal Contracts and Clustering

We can approach problem (b) – optimal contracts – by utilizing the priority score matrix from above

with a clustering algorithm. Then, the problem becomes unsupervised clustering on 3-space with

training data (i, j, wPij) where Pij the priority score of each city block, (i, j) the location of the city

block, and w the weight of the priority score (discussed below).

It is given in the problem statement that the transition cost adds extra time and money. Thus,

the goal is to minimize the number of transitions by creating large connected regions of city blocks in

9

2019 CMCM C. Chen, D. Pham, & W. Xu

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
1
2
3
4
5
6
7
8

0.0

0.2

0.4

0.6

0.8

1.0

Ithaca Priority Score

Figure 4: Priority score map of Ithaca. Color scale is based on the normalized priority score, ranging

between 0 and 1.

(i, j)-space that are weighted by the priority score w · Pij. We consider a region to be connected if all

cells are adjacent to at least one other cell of the same region. Two cells are considered adjacent if

their sides or corners are touching (i.e. two cells can be diagonally connected, since it is fairly quick to

pass along roads from one cell to another along the diagonal point).

Here, w is the factor of how much we want to weigh the priority score versus the spatial coordinates

(i, j). A weight of w = 0 implies that only spatial coordinates are important, and clustering should

be based solely on position. For very large w, instead, priority score is considered more important,

and clustering is based primarily off of priority score. We chose w = 100, since it gives us the best

clustering. (See Sec. 8.1 for the effects of w on the clustering results.)

Thus, the training data (i, j, wPij) allows us to create clusters based on the need of a region. As a

result, a given city block is grouped not only by how close it is to another block, but also by the number

of noncompliant slabs. This has an interesting consequence: each construction crew is associated with

a different frequency of noncompliance and therefore repair. For example, if we have 4 construction

crews (i.e. 4 clusters), then we will have one “high-intensity” crew, which services a small area that

has a large number of noncompliant slabs per unit area; two “medium-intensity” crews that service a

medium-sized area with a medium number of noncompliant slabs per unit area; and one “low-intensity”

crew that services a large area with a small number of noncompliant slabs per unit area.

The (human-assisted) algorithm that we are proposing to group city blocks is then:

1. Choose how many clusters we want on the map. This corresponds to the number of construction

crews.

2. Create the priority score matrix with elements Pij. Create the training dataset for clustering with

each datapoint (i, j, wPij).

3. Cluster the dataset using an unsupervised clustering algorithm.

10

2019 CMCM C. Chen, D. Pham, & W. Xu

4. Manually alter the clustering if anything is obviously not well-clustered.

The last step is necessary, since we have an unsupervised clustering algorithm, so some abnormal

behaviors might appear. Note that this change must not be excessive (no more than a few cells) or we

might as well just do this all manually!

6.1 k-means

The simplest approach is a centroid-based clustering algorithm: the algorithm initializes k centroids

and k clusters associated with these centroids, and then finds:

argmin
S

k∑
i=1

∑
x∈Si

∥x− µi∥2

where µi are centroids, and x is a data point in cluster Si. This is known as the k-means clustering

algorithm.

The argument in the equation is also known as the inertia or the within-cluster sum-of-squares.

Note that as a result of the way the k-means algorithm is constructed, it requires only one parameter,

the number of clusters k. We use the implemented k-means++ initialization for faster convergence, and

the scikit-learn’s k-means1 implementation.

It is important to note that in our (i, j, Pij) parameter space, Pij (units of population/time) does

not have the same units as (i, j) (unit of distance). As a result, k-means is not the best clustering

technique to use because we cannot weigh these parameters with different units on equal footing.

Running the k-means clustering algorithm on our data, we obtain the following map of Ithaca:

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

Figure 5: k-means clustering for (i, j, Pij) space with k = 4 (i.e. four construction crews).

1sklearn.cluster.KMeans

11

2019 CMCM C. Chen, D. Pham, & W. Xu

6.2 Gaussian Mixture

The Gaussian mixture model2 is a Gaussian, probability-based clustering algorithm. Data points are

generated from a mixture of Gaussian models. Each data point is given a probability of which cluster

(i.e. mixture) it belongs to. This method is a soft clustering algorithm (in contrast to the hard clustering

method, k-means, described above), since it gives a probability of each point belonging to each cluster

instead of definitively assigning each point one cluster. Each data point is then assigned to the cluster

with the highest probability.

First, let us consider a dataset X with N data points, with each data point xi, ∀i ∈ [1, N] having

dimension d. Here, we are working in d-space. For a multivariate Gaussian distribution, we have:

N (xi|µ,Σ) =
1√

(2π)d|Σ|
exp

Å
−1

2
(xi − µ)TΣ−1(xi − µ

ã
where xi ∈ Rd is a data point vector, µ ∈ Rd is the mean, Σ ∈ Rd×d is the d× d covariance matrix, and

|Σ| ≡ det(Σ) is the determinant of the covariance matrix.

For a mixture of K Gaussians, we take the superposition:

f(xi) =
k=K∑
k=1

wkN (xi|µk,Σk)

where wk is the weight of the kth Gaussian, and K is both the number of Gaussians and the number

of components.

We require the following conditions for the weights:

0 ≥ wk ≥ 1,
k=K∑
k=1

wk = 1

The likelihood function is defined as the combined probability of all data points xi, ∀i ∈ [1, N]:

L(X) =
N∏

n=1

f(xi) =
N∏
i=1

K∑
k=1

wkN (xi|µk,Σk)

=⇒ lnL(X) =
N∑
i=1

ln

(
K∑
k=1

wkN (xi|µk,Σk)

)
The goal is to maximize this likelihood function, i.e. use it as the objective function:

argmax
wk, µk,Σk

L(X)

With the log-likelihood given, one possible way to do this is Maximum Likelihood method (finding

parameters such that the likelihood function is optimized). To do this, we take the derivative with

respect to the variables µ and Σ, set that equal to zero, and then find µ and Σ. However, this can be

2sklearn.mixture.GaussianMixture

12

2019 CMCM C. Chen, D. Pham, & W. Xu

very difficult given the form of the log-likelihood that we have. Another approach is the Expectation-

Maximization (EM) method, which is an iterative algorithm. The derivation of the algorithm is fairly

involved, so we will just present the algorithm itself. Further information on the theorem derivation

can be found in Bishop [20]. The EM algorithm is:

1. Initialize µk, Σk, and wk (randomly). Find the log-likelihood with the initial parameter values.

2. Compute the posterior probabilities γZi
(µk,Σk) using µk, Σk, and wk with:

P (Zi = k|xi) = γZi
(µk,Σk) =

P (xi|Zi = k)P (Zi = k)

P (xi)
=

wkN (xi|µk,Σk)∑K
k=1wkN (xi|µk,Σk)

3. Find the new estimates µ′
k, Σ

′
k, and w′

k with:

µ′
k =

∑N
i=1 γZi

(µk,Σk)xi∑N
i=1 γZi

(µk,Σk)

Σ′
k =

∑N
i=1 γZi

(µk,Σk)(xi − µk)(xi − µk)
T∑N

i=1 γZi
(µk,Σk)

wk =
1

N

N∑
i=1

γZi
(µk,Σk)

4. Using the newly found µ′
k, Σ

′
k, and w′

k, repeat steps 2 and 3 until a set of parameters that is

acceptable within some predetermined ϵ precision is found.

Running the Gaussian mixture algorithm on our data, we obtain the following maps of Ithaca:

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

(a) The “raw” Gaussian mixture.

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

A B
C

D

(b) The human-assisted Gaussian mixture.

Figure 6: Gaussian mixtures for the (i, j, Pij) space with k = 4 components. On the left, two cells

are unconnected with the rest of their region. On the right, after minor manual edits, all regions are

connected now.

13

2019 CMCM C. Chen, D. Pham, & W. Xu

6.3 Results

We experimentally determine k = 4 to be the optimal number of clusters, hence, the plots depict

k-means and Gaussian mixture results for k = 4.

The k-means result in Fig. 5 shows some promising clustering. In particular, the algorithm correctly

identifies the “hot spot” of Collegetown and the center of the Commons. Furthermore, the regions are

fairly contiguous, almost satisfying one of our initial condition that the city blocks for one contractor

should be connected. However, it is not good enough for us to go in and correct the disconnected cells

manually (we will have to change about 8-10 blocks, which is a lot).

The Gaussian mixture clustering in Fig. 6 shows an obvious improvement over that of k-means. We

can clearly see that the cluster regions in Fig. 6a are “almost” contiguous. Here, we can use human

assistance to change only two blocks to make the regions completely connected. Fig. 6b shows the

results after this manual step. Thus, with k = 4 components, we clearly have four regions for the

contractors.

The results in Fig. 6b is very interesting. The first construction crew working in area C is the

aforementioned “high-intensity” crew. They need to repair more sidewalks per cell per unit time, but

cover a much smaller region. The contractors in area A and B come in second and third in terms of

work frequency, respectively. They are the “medium-intensity” crews, covering larger range, but also

having to repair fewer sidewalks per cell per unit time. Lastly, area D is the region where the sidewalks

per cell per unit time that need to be repaired is very low. That is, for area D, the City of Ithaca only

needs to deploy a construction crew to each cell very rarely. Thus, they can cover a larger range over

a longer time scale.

It is important to note that the areas that we are proposing here are very similar to the cluster of

areas that the Ithaca Sidewalk Improvement program are currently having [2, 3]. The areas proposed

by the Ithaca Sidewalk is reproduced from [2] in Fig. 7. Area 5 corresponds to region D, area 3 and 1

correspond to A and B, and 2 corresponds to C.

Figure 7: The Ithaca Sidewalk Improvement Program area cluster.

14

2019 CMCM C. Chen, D. Pham, & W. Xu

7 Optimizing Slab Repair Costs

A slab can be uniquely defined by three variables: the elevation of the center of the slab z, the angle

of the running slope of the slab θ, and the angle of the cross slope of the slab ϕ. Then, any slab can

be represented by a point in z − θ − ϕ space. We call the z − θ − ϕ space point representation of a

given slab that slab’s parameter-point. We want to find an optimal algorithm that most cost-effectively

employs the minimum changes in z, θ, and ϕ of all slabs on a given street so that it meets the ADA

requirements.

7.1 Clarifications & Interpretations

For the raising repair method, we interpret “raising” to mean changing to soil levels beneath a given

slab such that we can change the z, θ, and ϕ values of the slab to be whatever we want (i.e. “raising”

means we can both physically raise and lower the slab).

For the cutting repair method, we interpret “linear foot” to be along the length dimension of a slab,

parallel to the street. We also interpret “at most 2 inches” to refer to the depth of the slab. Since a

slab is 4 ft × 4 ft, the cost of cutting a slab is $16 · 4 = $64 on average, while the cost of raising a

slab will be $5.13 · 16 = $82.08. Additionally, replacing a slab costs $22 · 16 = $352. Thus, it is always

cheaper to cut a slab than raise a slab, and it is always cheaper to raise a slab than replace a slab.

7.2 Setup

Now, we just need to determine the conditions under which each repair method is employed. Clearly,

if a slab is cracked, it cannot be fixed by cutting or raising, so it must be replaced. However, if a slab

is not cracked, it can always be fixed by either cutting or raising, since both cutting and raising are

capable of adjusting both angle and elevation (note that, as per our assumptions, elevation, i.e. the

z-direction, is the only aspect of position that we need to consider). So, we need to determine the

conditions (of an uncracked slab) under which we are able to fix with cutting, and the conditions under

which no repairs are necessary at all.

Multiple ADA compliance violations can be fixed at once with one carefully planned cut, so we can

consider ADA requirements (3), (4), and (5) together3. Any slab that cannot be fixed with one cut

must be raised. So, we must determine the possible z, θ, and ϕ values of a given slab that can be fixed

with one cut. To do this, we find the set of points in z− θ−ϕ space that are considered “good” (based

off of the ADA requirements), in that they do not need any repairs. Then, we find the set of points

that are considered “cuttable”, in that given the constraints on cutting, and the relationships between

z, θ, and ϕ, we can move any point in that set into the “good” region. The remaining set of points in

z − θ − ϕ space must be raised.

We first consider the simplest case of a street with only two slabs.

3Note that requirement (1) only applies for cracks, which require slab replacement. We assume the slabs are all 4 ft

× 4 ft so ADA requirement (2) is automatically satisfied.

15

2019 CMCM C. Chen, D. Pham, & W. Xu

7.3 Two-Slab Case

Let the first slab have its parameter-point located at the origin of z− θ−ϕ space. We want to find the

region in which the second slabs lies where no repair action is required, and the setup satisfies ADA

requirements.

First, we can characterize the cutting into two categories: cuts that only adjust the height z of a

slab, and the cuts that adjust the angles θ and ϕ. Since we are only allowed to cut at most 2 inches

into the slab, we know that the change in height for a pure z correction has to be between 0 and −2

inches. Similarly, an angle correction has to have sin θ, sinϕ ∈ [−2/48, 2/48], which corresponds to a

change in slope of -4% to 4%.

48 in. 48 in.

2 in.

Figure 8: Two different possible cuts. Left: a cut that only corrects for z. Right: a cut that corrects

for θ and/or ϕ. We can see that if we want to correct for θ, ϕ, z must change as a result.

However, from Fig. 8 we can see that in order to correct for θ and/or ϕ, we must simultaneously

change z. Thus, we can draw out a region in the z−θ−ϕ space that represents the possible parameter-

points reachable by cutting a slab with parameter-point at the origin. Similarly, we can also draw out a

region which represents the possible original parameter-points of a slab that has already been cut and

now has its parameter-point at the origin. Fig. 9 depicts these two regions, with the first one in blue,

and the second one in red. We can see that the shape of these regions when projected onto the z − θ

plane and z − ϕ plane are rhombuses. It is not hard to show that in the full 3D z − θ − ϕ space, the

shape will be an octahedron. Taking inspiration from the future/past light cones in special relativity, we

will call these regions the future-cuttable octahedron (FCO) and the past-cuttable octahedron (PCO),

respectively.

With this in mind, we can construct the repair decision map, i.e. a map that shows the region in

which each repair method is optimal (no repair required, cutting, and raising). First, let’s consider the

z− θ plane. Given the ADA requirements (3)-(5), it is easy to find the region where, if the parameter-

point of the second slab is located in that region, the second slab does not require any repairs. This

region is depicted by the shaded parallelogram in Fig. 10. Call this region the “good” region, denoted

by Ω. Call the region where, if the parameter-point of the second slab is located in that region, the

second slab can be repaired by cutting, the “cuttable” region. Then, to find the cuttable region, we

can exploit a common trick in special relativity for causality: find the union of all of the PCO on the

boundary of the good region. Or in mathematical terms: for all xi ∈ ∂Ω, the region is given by⋃
xi∈∂Ω

PCO(xi).

Fig. 10 shows the repair decision map with the shaded good region and cuttable region.

16

2019 CMCM C. Chen, D. Pham, & W. Xu

future-cuttable

octahedron

θ, ϕ

z

past-cuttable

octahedron

Figure 9: The region spanned by the parameter-points reachable by cutting a slab with parameter-

point at the origin is marked in blue and is called the future-cuttable octahedron (FCO). The region

spanned by the possible original parameter-points of a slab that has already been cut and now has its

parameter-point at the origin is marked in red and is called the past-cuttable octahedron (PCO).

1 2 3 4 5-1-2-3-4-5

1

2

3

48sinθ

z

cuttable

raising

Figure 10: Repair decision map on the z−θ plane. The shaded region is the good region. The cuttable

region is also shown. This area can be obtained by taking the union of all PCO that starts from the

boundary of the shaded region.

Similarly, we can calculate the repair decision map on the z − ϕ plane shown in Fig. 11. Here, the

good region is a hexagon. From the z − θ plane and z − ϕ plane repair maps, we can generate the full

repair decision map in 3D as shown in Fig. 12. The good region is a slanted hexagonal prism as shown

on the left side of Fig. 12. The cuttable region is the football-shape on the right side of Fig. 12.

Thus, the optimal strategy for fixing a two-slab street is outlined below:

1. Check for any cracked slabs. If a slab is cracked, replace it.

2. Plot the parameter-point of both slabs in z − θ − ϕ space.

3. Draw out the repair decision map around both of the parameter-points.

4. If the parameter-point of one slab lies in the good region of the other slab, then no repair is

17

2019 CMCM C. Chen, D. Pham, & W. Xu

necessary.

5. If the parameter-point of one slab lies in the cuttable region of the other slab, then we cut the

first slab.

6. If neither of parameter-points of the two slabs lies in each other’s cuttable region, then we raise

one of the slabs.

1 2 3 4 5-1-2

1

2

3

-1

cuttable

raising

96sinϕ

z

Figure 11: Repair decision map on the z − ϕ plane. The shaded region is where no repair is required.

The region which can be fixed by cutting is shown. This area can be obtained by taking the union of

all PCO that starts from the boundary of the shaded region.

z

θ

ϕ

Figure 12: The full 3D repair decision map. Left: the good region. Right: the cuttable region. This

region can be obtained by taking the union of all PCO that starts from the boundary of the embedded

good region.

The pseudo-code for this algorithm is shown in Algo. 1. This algorithm will always allow us to use

18

2019 CMCM C. Chen, D. Pham, & W. Xu

the cheapest way to repair the slabs. Using this algorithm as a basis, we can generalize to the case of

an arbitrary number of slabs.

Algorithm 1: Algorithm to determine the repair action for a slab i, given the good and

cuttable regions of another slab j, assuming the slab is not cracked. If it is cracked, the only

available action is to replace it with cost = 352. Cost is in US$ for one full slab.

1 function action (Pi, Gj,Ωj);

Input : point Pi = (zi, θi, ϕj), Gj the good region of point j, and Ωj the cuttable region of

point j

Output: cost, action

2 cost := 0

3 action := None

4 if Pi ∈ Gj then

5 cost := 0

6 action := No action for block i

7 else if Pi ∈ Ωj then

8 cost := 64

9 action := Cut block i so that Pi ∈ Gj

10 else

11 cost := 82.08

12 action := Raise block i so that Pi ∈ Gj

13 return cost, action

7.4 Generalized Algorithms for Arbitrary Slabs

Using the simplest-case algorithm established in Sec. 7.3, we propose two algorithms with complexity

O(n2) that will return the repair action, and its associated cost, on each slab on a street with an

arbitrary number of slabs.

The first algorithm (Algo. 2) uses a sequential reference slab to generate the good region and the

cuttable region. For all neighboring slabs, we use Algo. 1 to find the optimal action for the two slabs

and add up the cost of a full iteration over all slabs on the street. Then, we loop through all possible

starting points of our iterations to give the minimum cost.

The second algorithm (Algo. 3) uses an absolute fixed reference point to generate the good region

and the cuttable region. For all slabs, we use Algo. 1 to find the optimal action for the slab with respect

to the absolute reference slab and add up the cost of a full iteration over all slabs on the street. Then,

we loop through all possible starting points of our iterations to give the minimum cost.

19

2019 CMCM C. Chen, D. Pham, & W. Xu

Algorithm 2: First algorithm to find the minimal solution for fixing slabs that are not cracked,

in a sequential order. If a slab is cracked, replace it. Gj the good region of point j, and Ωj

is the cuttable region of point j. These can be calculated from point Pj through the process

described in section 7.3

1 function sequential referencing (P);

Input : P - list of slab points (zi, θi, ϕi) that are not cracked

Output: cost, sequence of action A

2 min cost := ∞
3 min action := { }
4 N := |P |
5 for i ∈ [0, N − 1] do

6 cost := 0

7 action sequence := { }
8 j := i

9 while ∃ unchecked slabs do

10 cost temp, action temp := action(Pj+1, Gj,Ωj)

11 cost := cost + cost temp

12 action sequence := action ∪ action temp

13 j := next unchecked slab

14 end

15 if cost < min cost then

16 min cost := cost

17 min action := action sequence

18 end

19 end

20 return min cost, min action

20

2019 CMCM C. Chen, D. Pham, & W. Xu

Algorithm 3: Second algorithm to find the minimal solution for fixing slabs that are not

cracked by comparing it to a fixed, reference slab. If a slab is cracked, replace it. Gj the good

region of point j, and Ωj the cuttable region of point j. These can be calculated from point

Pj through the process described in section 7.3.

1 function fixed referencing (P);

Input : P - list of slab points (zi, θi, ϕi) that are not cracked

Output: cost, sequence of action A

2 min cost := ∞
3 min action := { }
4 N := |P |
5 for i ∈ [0, N − 1] do

6 cost := 0

7 action sequence := { }
8 for j ∈ [0, N − 1] AND j ̸= i do

9 cost temp, action temp := action(Pj, Gi,Ωi)

10 cost := cost + cost temp

11 action sequence = action ∪ action temp

12 end

13 if cost < min cost then

14 min cost := cost

15 min action := action sequence

16 end

17 end

18 return min cost, min action

21

2019 CMCM C. Chen, D. Pham, & W. Xu

8 Validity & Robustness Testing

8.1 Priority Score Perturbation

Since the result for clustering in Sec. 6 depends heavily on the priority score, we introduce a random

perturbation of the priority score to see its effect on the clustering for optimal contracts. From our

definition of priority in Sec. 5, these perturbations can be interpreted as follows:

1. An incorrect estimation of the population of each city block.

2. An incorrect estimation of the total number of slabs in each city blocks.

3. Any sort of incorrect estimation in determining the stress of slabs in a given city block, including

perturbations from the second order effects (e.g. pedestrian-caused stress and flowing water-

induced stress) and incorrect assumptions that the stress is uniform across the city.

The perturbation is introduced by the following formula:

P ′
ij = Pij(1 + ϵij)

where P ′
ij is the perturbed priority score at cell (i, j), Pij is the original priority score, and ϵij is a

random variable drawn from a normal distribution with mean µ and standard deviation σ. We use

three different values for σ: σ = 0.01, 0.05, 0.1. The perturbed priority score maps are shown in Fig. 13.

We can see that as σ increases, the priority score map differs more from the unperturbed (σ = 0) map.

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

=0

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

=0.05
0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

=0.01

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

=0.1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: The perturbed priority score map with Gaussian noise of σ = 0 (unperturbed), 0.01, 0.05,

and 0.1. We can see that as σ increases, the priority maps differs more from the unperturbed map.

22

2019 CMCM C. Chen, D. Pham, & W. Xu

We run the Gaussian mixture algorithm for clustering using these perturbed priority score maps.

The result is shown in Fig. 14. We can see that the clustering is not affected by the given perturbation.

This result shows that our clustering algorithm is a robust algorithm that can withstand perturbation

up to σ = 0.1. This also justifies our first order approximation of the lifetime of a concrete slab in

Sec. 5. We stated that the typical value of the second order effect of stresses is at least 2 orders of

magnitude less than the primary source of stress (thermal stress). Our result of robustness analysis

shows that the clustering result stays the same up to a perturbation of σ = 0.1. This indicates that

even if we underestimate these second order effect by an order of magnitude, it is still safe to ignore

these secondary effects.

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

=0

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

=0.01

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

=0.05

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

=0.1

Figure 14: Result of clustering using Gaussian mixture with the perturbed priority score map. We can

see that the clustering result is invariant under a perturbation of σ up to 0.1.

8.2 Weight of Clustering

As we stated in Sec. 6, we cluster city blocks in the (i, j, Pi,j) space. However, the units for (i, j) and Pij

are different. The units for i and j are distance, while the units for Pij are arbitrary. If the units of the

parameter space are not the same for clustering algorithm, then there is an additional degree of freedom

which corresponds to the weights which we can assign to each parameter. In mathematical terms, we

can choose any metric for the parameter space. Therefore, to study the effect of this additional degree

of freedom on the clustering result, we alter the weight w of the priority score when the data set is

passed into the clustering algorithm. We define the weight as the following: for any two points x, y in

23

2019 CMCM C. Chen, D. Pham, & W. Xu

the parameter space, the distance between x and y is given by:

D(x, y) =
»

(ix − iy)2 + (jx − jy)2 + w2(Px − Py)2

In other words, the weight w changes the importance of the priority score. Clustering with a larger

weight value places more importance on the priority score.

Fig. 15 shows the resulting clustering for weights w = 0, 10, 50, 100, 1000. As expected, when w = 0,

the clustering algorithm groups city blocks based solely on the physical distance. As w increases, the

clustering becomes more and more dominated by the priority score. When w = 100, the clustering

result is dictated primarily by the priority score.

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

w=0

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

w=10

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

w=50

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

w=100

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

w=1000

Figure 15: Gaussian mixture cluster results for different priority score weights.

8.3 Optimizing Slab Repair Strategy

The optimality of both Algo. 2 and Algo. 3 can be easily tested by considering all possible sequence of

actions. For N slabs on a street, both algorithms only test N possible sequences and find the minimum

24

2019 CMCM C. Chen, D. Pham, & W. Xu

of case of those N sequences. However, there are 3 possible actions for all slabs: no repair, cutting, and

raising. In addition, the action of raising can give any possible value in the z − θ − ϕ space, and the

action of cutting can give any value in the FCO, which is a subset of the z−θ−ϕ space. Therefore, each

of the 3N sequence of actions are embedded in a 3ND space. The naive way to search for the optimal

solution requires a computation time of 3N · 3N/δ where δ is the resolution of the z− θ− ϕ space. If we

want a solution within a smaller tolerance of the true minimum, then we will need a higher resolution.

However, the higher the resolution, the more computationally expensive the algorithm becomes.

On the other hand, our proposed algorithms are computationally cheap, even if not guaranteed to

give the global minimum solution. Nevertheless, from our rigorous analysis in Sec. 7.3, our algorithms

provide some degree of optimality.

9 Strengths & Weaknesses

9.1 Priority Score

The primary strength of our priority score analysis is that we use a physics-based analysis that has its

basis in few assumptions about the various potential causes of slab stress. Through this physics-based

analysis, we rigorously demonstrate our formalism and validity of our implementation. The validity of

our implementation and analysis is further reinforced in Sec. 8.1.

Our priority score analysis does not have many weaknesses, but it has some limitations. The primary

limitation is the failure to directly apply much of the data that was available and could have been used

to more accurately determine the slab stresses across Ithaca. For example, we were able to find very

detailed tree [8] and soil [6] data that, with more time, we could have incorporated into our model to

produce a more accurate priority score map. However, these other effects must be very large in order

to change our priority score map, as Sec. 8.1 shows.

9.2 Optimal Contracts and Clustering

The first and most important strength of using unsupervised clustering on the (i, j, wPij)-space data is

the semi-automation of the process. In this sense, we are able to combine the power of unsupervised

clustering with the human ability to recognize clustering patterns. By using the (i, j, wPij) parameter

space, we are balancing the weight of spatial closeness and priority. Thus, implicitly we are dividing

work equally for the different construction crews. A “high-intensity” crew only has to cover a small

region, whereas a “low-intensity” crew has to cover a larger area. Through testing two different methods,

k-means and Gaussian mixture, we are able to select the unsupervised clustering method that gives the

better result: Gaussian mixture. Through perturbation analysis, we see that a σ = 0.1 perturbation in

priority score does not change the results of the Gaussian mixture clustering. Therefore, this method

is robust, at least to our perturbation tests. It also achieves the goal of contiguous regions, thus

minimizing the cost of construction.

The first weakness of our method of clustering is also its strength: using human modifications at

the end. Thus, this algorithm’s flow is not entirely automated. However, one can argue that this step is

necessary to achieve the optimal solution. Another weakness of this method is its sensitive dependence

25

2019 CMCM C. Chen, D. Pham, & W. Xu

on the weight w. As seen above, a change in w can change the clustering results drastically. Thus, we

had to determined w experimentally. Again, this is another weakness because the process for finding

w is subjective and not automated.

9.3 Optimizing Slab Repair Costs

The most important strength of our analysis of the optimal strategy of slab repair is the rigorous

geometric argument for finding the good region and cuttable region. Using the result from the simplest

case of two slabs, we generalize the problem into an arbitrary number of slabs and propose two solution-

finding algorithms that have complexity O(N2).

The main weakness in the generalization of the two-slab case is the limited set of possible solutions

that are probed in our algorithms when compared to the full set of possible solutions. Thus, our

algorithms are not guaranteed to give the optimal solution, although it is significantly faster than the

naive approach which tests every single possible sequence of actions.

10 Conclusions & Future Work

In this work, we present solutions to several important problems that are central to improving Ithaca

sidewalks. First, we determine the factors affecting a sidewalk slab through physically motivated

models. We arrive at simplifying results to determine that the characteristic time scale of the slab is a

constant, with physical effects come in at the second order. From here, we determine the priority score

map of Ithaca. This map is the goal we sought for the first problem.

Then, we seek to cluster the data on a three-dimensional space, balancing between spatial coordi-

nates and priority score. We compare two methods of unsupervised clustering, and find that Gaussian

mixture gives the best results. We use a human-assisted approach: human validation at the last step is

necessary to optimize. Furthermore, we find contiguous regions for construction crews to travel. This

help minimize the cost since there is no need to charge the extra $1000 for long-distance moving.

In the last problem, we constrain the solution space to the problem of raising and cutting slabs

through a geometrically-based model inspired by concepts from special relativity. With this, we are able

to determine the possible ways to raise or cut a slab in relation to another slab while also complying

with the ADA. Armed with this solution space, we further present two O(n2) algorithms to find

approximated solutions to fixing sidewalks made up of N slabs.

Robustness analysis through perturbations of parameters, optimality of solutions, and discussion

of strengths and weaknesses are also included. Here, we show that our models are fairly robust: when

the priority map is perturbed up to σ = 0.01, the clustering result does not change. Furthermore, the

algorithms presented to find solutions to fix an entire sidewalk are of polynomial-order time complexity,

in contrast to the brute force time complexity of O(3n).

There are many venues for potential improvement of our models. In the first problem, having data of

trees around Ithaca in a more easily accessible format could help us model the effects of trees on specific

slabs and specific streets. In addition, having data of soil quality and type on each street in a more

easily accessible format would allow us to calculate the effects of stress due to the soil (e.g. differential

thermal expansion of the soil, effects on tree root growth) and consequently their effects on the lifetime

26

2019 CMCM C. Chen, D. Pham, & W. Xu

of the sidewalk slabs. Given more time, we could have searched for a better solution-finding algorithm

that guarantees a stronger minimality of cost and better computational complexity. Furthermore, a

fully automated clustering algorithm that does not require manual alterations would be ideal for a more

refined, automated streamline workflow. Lastly, having more data in general (e.g. average number of

people at a bus stop over the course of a day, or greater resolution of Ithaca population data, etc.) would

allow us to calculate solutions with better resolution. With these improvements, we could accurately

cluster city blocks, and even propose the specific routes each construction crew should take!

27

2019 CMCM C. Chen, D. Pham, & W. Xu

References

[1] The Quikrete Companies. Project: Concrete Sidewalks and Small Slabs. [Online; accessed 17-

November-2019].

[2] City of Ithaca. Sidewalk Improvement Program. [Online; accessed 17-November-2019]. url: https:

//storymaps.arcgis.com/stories/4df2b76ade6a4171a5ccbed80bf47ceb.

[3] City of Ithaca. Sidewalk Policy. [Online; accessed 17-November-2019]. url: https : / / www .

cityofithaca.org/219/Sidewalk-Policy.

[4] Bald Eagle Construction & Permit Services. Why Concrete Cracks (And What To Do About

It). [Online; accessed 17-November-2019]. url: https://baldeagleconstruction.com/why-

concrete-cracks.

[5] E. Gillespie. What Causes a Crack in a Sidewalk? [Online; accessed 17-November-2019]. Sept.

2017. url: https://www.gardenguides.com/info_12080018_causes-crack-sidewalk.html.

[6] United States Department Of Agriculture (USDA) and Cornell University Agricultural Exper-

iment Station. Soil Survey, Tompkins County NY, 1965. [Online; accessed 17-November-2019].

1965. url: https://cugir.library.cornell.edu/catalog/cugir-007498.

[7] Centers for Disease Control and Prevention. Anthropometric Reference Data for Children and

Adults: United States, 2011–2014. [Online; accessed 16-November-2019]. url: https://www.

cdc.gov/nchs/data/series/sr_03/sr03_039.pdf.

[8] City of Ithaca. Ithaca Blooms. [Online; accessed 17-November-2019]. url: http://geo2.tompkins-

co.org/html/?viewer=ithacablooms.

[9] W.F. Cassie. “The Fatigue of Concrete”. In: Journal of the Institution of Civil Engineers 11.4

(1939), pp. 165–167.

[10] G.F. Carter and D.E. Paul. Materials science & engineering. ASM International, 1991.

[11] I. Yoshitake et al. “A Prediction Method of Tensile Young’s Modulus of Concrete at Early Age”.

In: Advances in Civil Engineering 2012 (2012).

[12] N.H. Tran, K.D. Hall, and M. Jameson. “Coefficient of Thermal Expansion of Concrete Materi-

als”. In: Journal of the Transportation Research Board 2087.1 (2008), pp. 51–56.

[13] Western Regional Climate Center. ITHACA CORNELL UNIV, NEW YORK – Climate Sum-

mary. [Online; accessed 16-November-2019]. url: https://wrcc.dri.edu/cgi-bin/cliMAIN.

pl?ny4174.

[14] J. Guo and P.Y. Julien. “Shear Stress in Smooth Rectangular Open-Channel Flows”. In: JOUR-

NAL OF HYDRAULIC ENGINEERING 131.1 (2005), pp. 30–37.

[15] OpenStreetMap. CensusViewer. [Online; accessed 17-November-2019]. url: http://newyork.

us.censusviewer.com/client.

[16] D. Pham, C. Shiau, and K.Wadell. “The Flu Is Coming: A Case Study in Ithaca”. In: Vladimirsky’s

Math 3610 Fall 2019 Project 1 (Oct. 2019).

28

https://storymaps.arcgis.com/stories/4df2b76ade6a4171a5ccbed80bf47ceb
https://storymaps.arcgis.com/stories/4df2b76ade6a4171a5ccbed80bf47ceb
https://www.cityofithaca.org/219/Sidewalk-Policy
https://www.cityofithaca.org/219/Sidewalk-Policy
https://baldeagleconstruction.com/why-concrete-cracks
https://baldeagleconstruction.com/why-concrete-cracks
https://www.gardenguides.com/info_12080018_causes-crack-sidewalk.html
https://cugir.library.cornell.edu/catalog/cugir-007498
https://www.cdc.gov/nchs/data/series/sr_03/sr03_039.pdf
https://www.cdc.gov/nchs/data/series/sr_03/sr03_039.pdf
http://geo2.tompkins-co.org/html/?viewer=ithacablooms
http://geo2.tompkins-co.org/html/?viewer=ithacablooms
https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ny4174
https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ny4174
http://newyork.us.censusviewer.com/client
http://newyork.us.censusviewer.com/client

2019 CMCM C. Chen, D. Pham, & W. Xu

[17] Ithaca City School District. [Online; accessed 17-November-2019]. url: https://www.ithacacityschools.

org/.

[18] National Center for Education Statistics: Ithaca Senior High School. [Online; accessed 17-November-

2019]. url: https://nces.ed.gov/ccd/schoolsearch/school_detail.asp?Search=1&

DistrictID=3615570&ID=361557001340.

[19] M. Smith. Ithaca, Tompkins municipal employees highest paid in region. [Online; accessed 17-

November-2019]. Sept. 2016. url: https://ithacavoice.com/2016/09/ithaca-tompkins-

municipal-employees-highest-paid-region/.

[20] C. Bishop. Pattern Recognition and Machine Learning. 1st ed. Springer-Verlag New York, 2006.

A Python Code

1 # Dang Pham , Calvin Chen , William Xu

2 # CMCM 2019, 18 November 2019

3 # this code creates ALL the plots shown in the paper

4

5 import networkx as nx

6 import numpy as np

7 import osmnx as ox

8 import pandas as pd

9 from numpy import *

10 from matplotlib.pyplot import *

11 from sklearn.cluster import KMeans

12 from sklearn.mixture import GaussianMixture

13

14 ox.config(log_console=True , use_cache=True)

15 gmapkey = ’AIzaSyDlOlzIRJx -3Ihn4omh -CY2SDOlahSn0Es ’

16

17 ### DATA ###

18 #ithaca population map

19 ithaca_population_map = [

20 [600, 600, 0, 0, 0, 0, 0, 600, 200, 600, 600, 1000, 1000,

0],

21 [200, 600, 200, 0, 0, 200, 600, 1000, 600, 600, 0, 0, 0,

0],

22 [200, 200, 200, 0, 0, 600, 1000, 1000, 600, 200, 1000, 0, 0,

0],

23 [600, 0, 200, 200, 0, 1000, 1000, 1000, 600, 600, 600, 0, 0,

0],

24 [600, 200, 600, 200, 600, 1000, 1000, 600, 1000, 600, 600, 600, 600,

0],

25 [200, 200, 200, 200, 600, 1000, 1000, 600, 1000, 1000, 1000, 1000, 1000,

1000],

26 [200, 200, 0, 200, 0, 1000, 1000, 600, 1000, 600, 200, 600, 600,

0],

29

https://www.ithacacityschools.org/
https://www.ithacacityschools.org/
https://nces.ed.gov/ccd/schoolsearch/school_detail.asp?Search=1&DistrictID=3615570&ID=361557001340
https://nces.ed.gov/ccd/schoolsearch/school_detail.asp?Search=1&DistrictID=3615570&ID=361557001340
https://ithacavoice.com/2016/09/ithaca-tompkins-municipal-employees-highest-paid-region/
https://ithacavoice.com/2016/09/ithaca-tompkins-municipal-employees-highest-paid-region/

2019 CMCM C. Chen, D. Pham, & W. Xu

27 [0, 200, 0, 1000, 0, 600, 1000, 1000, 600, 200, 0, 600, 200,

1000],

28 [0, 200, 0, 0, 0, 0, 1000, 0, 600, 600, 0, 0, 0,

200]

29]

30 TOTAL_GOV_EMPLOYEES = 303

31 TOTAL_GOV_BUILDINGS = 0

32

33 ITHACA_HIGH_SCHOOL_POP = 1360

34 ALL_OTHER_SCHOOLS_POP = 400

35

36 PER_BUS_STOP_POPULATION = 30

37 SLAB_LENGTH = 4 #ft

38 FT_TO_METER = 0.3048 #ft/meter

39

40 ithaca_map_x = 9

41 ithaca_map_y = 14

42

43 ithaca_map_r0 = (42.4613 , -76.5216)

44 ithaca_map_r1 = (42.4278 , -76.47)

45

46 ### END OF DATA ###

47

48 ### BEGIN MAIN CODE ###

49 # get the street network for Ithaca

50 place = ’Ithaca ’

51 place_query = {’city’:’Ithaca ’, ’state ’:’New York’, ’country ’:’USA’}

52 G = ox.graph_from_place(place_query , network_type=’walk’, simplify=True)

53

54 # add elevation , calculate grade

55 G = ox.add_node_elevations(G, api_key=gmapkey)

56 G = ox.add_edge_grades(G)

57 edge_grades = [data[’grade_abs ’] for u, v, k, data in ox.get_undirected(G).edges(

keys=True , data=True)]

58 G_proj = ox.project_graph(G)

59

60 # first plot , plot of ithaca

61 fig ,ax = ox.plot_graph(G_proj)

62 fig.savefig(’ithaca_streets.pdf’)

63

64

65 # get all the buildings of Ithaca

66 government_buildings = [’townhall ’, ’courthouse ’, ’police ’, ’post_office ’, ’

fire_station ’]

67 school_buildings = [’school ’]

68

69 amenities_list = government_buildings + school_buildings

70

71 tags = {

72 ’amenity ’ : amenities_list ,

30

2019 CMCM C. Chen, D. Pham, & W. Xu

73 ’highway ’ : ’bus_stop ’

74 }

75 place_name = ’Ithaca , New York , USA’

76 gdf = ox.pois_from_place(place=place_name , tags=tags)

77

78 for gov_building in government_buildings:

79 TOTAL_GOV_BUILDINGS += len(gdf.loc[gdf[’amenity ’] == gov_building])

80 PER_GOV_POP = ceil(TOTAL_GOV_EMPLOYEES/TOTAL_GOV_BUILDINGS)

81

82 # get gov buildings

83 gov_df = []

84 for building in government_buildings:

85 temp_df = gdf.loc[gdf[’amenity ’] == building]

86

87 for index , row in temp_df.iterrows ():

88 if row[’geometry ’].type == ’Point’:

89 y = row[’geometry ’].x #Google maps convention , lat = y, lon = x,

opposite of OSM convention

90 x = row[’geometry ’].y

91 elif row[’geometry ’].type == ’Polygon ’:

92 y = mean(row[’geometry ’]. exterior.coords.xy[0])

93 x = mean(row[’geometry ’]. exterior.coords.xy[1])

94 else:

95 raise ValueError

96 gov_df.append ({’type’: building , ’name’: None , ’x’: x, ’y’: y})

97 gov_df = pd.DataFrame(gov_df)

98

99 # get schools

100 school_df = []

101 for index , row in gdf.loc[gdf[’amenity ’] == ’school ’]. iterrows ():

102 if row[’geometry ’].type == ’Point’:

103 y = row[’geometry ’].x #Google maps convention , lat = y, lon = x, opposite

of OSM convention

104 x = row[’geometry ’].y

105 elif row[’geometry ’].type == ’Polygon ’:

106 y = mean(row[’geometry ’]. exterior.coords.xy[0])

107 x = mean(row[’geometry ’]. exterior.coords.xy[1])

108 elif row[’geometry ’].type == ’MultiPolygon ’ and row[’name’] == ’Ithaca High

School ’:

109 x = 42.455992

110 y = -76.498355

111 else:

112 raise ValueError

113 school_df.append ({’type’: ’school ’, ’name’: row[’name’], ’x’: x, ’y’: y})

114 school_df = pd.DataFrame(school_df)

115

116 # get bus stops

117 bus_df = []

118 for index , row in gdf.loc[gdf[’highway ’] == ’bus_stop ’]. iterrows ():

119 if row[’geometry ’].type == ’Point’:

31

2019 CMCM C. Chen, D. Pham, & W. Xu

120 y = row[’geometry ’].x #Google maps convention , lat = y, lon = x, opposite

of OSM convention

121 x = row[’geometry ’].y

122 elif row[’geometry ’].type == ’Polygon ’:

123 y = mean(row[’geometry ’]. exterior.coords.xy[0])

124 x = mean(row[’geometry ’]. exterior.coords.xy[1])

125 else:

126 raise ValueError

127 bus_df.append ({’type’: ’bus_stop ’, ’name’: None , ’x’: x, ’y’: y})

128 bus_df = pd.DataFrame(bus_df)

129

130 all_dfs = {’gov’: gov_df , ’school ’: school_df , ’bus_stop ’:bus_df}

131 PER_BUS_STOP_POPULATION = 5

132 # Cell class for each Ithaca cell

133 class Cell:

134 def __init__(self , r0 , r1 , night_population = 0, bus_stops = None , gov = None ,

schools = None):

135

136 self.r0 = r0 #upper left corner coordinate r0 = (x0 ,y0)

137 self.r1 = r1 #lower right corner coordinate

138

139

140 self.night_population = night_population

141

142 self.bus_stops = bus_stops

143 self.gov = gov

144 self.schools = schools

145

146 if self.bus_stops != None and self.gov != None and self.schools != None:

147 self.day_population = self.calculate_day_population ()

148

149 def calculate_day_population(self):

150

151 total_school_population = 0

152

153 for index , row in self.schools.iterrows ():

154 if row[’name’] == ’Ithaca High School ’:

155 total_school_population += ITHACA_HIGH_SCHOOL_POP

156 else:

157 total_school_population += ALL_OTHER_SCHOOLS_POP

158

159 total_gov_population = len(self.gov)*PER_GOV_POP

160 total_bus_stops_population = len(self.bus_stops)*PER_BUS_STOP_POPULATION

161

162 self.day_population = total_school_population+total_gov_population+

total_bus_stops_population

163

164 # make ithaca map and populate it with buildings , bus stops , and populations

165 ithaca_map = []

166 ithaca_delta_x = abs(ithaca_map_r1 [0] - ithaca_map_r0 [0])/ithaca_map_x

32

2019 CMCM C. Chen, D. Pham, & W. Xu

167 ithaca_delta_y = abs(ithaca_map_r1 [1] - ithaca_map_r0 [1])/ithaca_map_y

168

169 for i in range(ithaca_map_x):

170 ithaca_map.append ([])

171 for j in range(ithaca_map_y):

172

173 cell_r0 = (ithaca_map_r0 [0] - i*ithaca_delta_x , ithaca_map_r0 [1] + j*

ithaca_delta_y) #upper left corner of the cell

174 cell_r1 = (ithaca_map_r0 [0] - (i+1)*ithaca_delta_x , ithaca_map_r0 [1] + (j

+1)*ithaca_delta_y) #lower right corner

175

176 ithaca_map[i]. append(Cell(night_population=ithaca_population_map[i][j], r0=

cell_r0 , r1=cell_r1))

177 ithaca_map = array(ithaca_map)

178 ithaca_day_pop = zeros((ithaca_map_x , ithaca_map_y))

179 for i in range(ithaca_map_x):

180 for j in range(ithaca_map_y):

181 cell_ij = ithaca_map[i,j]

182

183 cell_ij_x0 = cell_ij.r0[0]

184 cell_ij_x1 = cell_ij.r1[0]

185

186 cell_ij_y0 = cell_ij.r0[1]

187 cell_ij_y1 = cell_ij.r1[1]

188

189 no_of_bus = 0

190 no_of_schools = 0

191 no_of_gov = 0

192 for key , df in all_dfs.items():

193 temp_df = []

194 for _, row in df.iterrows ():

195 r = (row[’x’], row[’y’])

196 if cell_ij.r1[0] < r[0] < cell_ij.r0[0]:

197 if cell_ij.r0[1] < r[1] < cell_ij.r1[1]:

198 temp_df.append ({’type’: row[’type’], ’name’: row[’name’], ’

x’: row[’x’], ’y’: row[’y’]})

199 temp_df = pd.DataFrame(temp_df)

200 if key == ’bus_stop ’:

201 no_of_bus = temp_df

202 elif key == ’school ’:

203 no_of_schools = temp_df

204 elif key == ’gov’:

205 no_of_gov = temp_df

206

207 cell_ij.bus_stops = no_of_bus

208 cell_ij.schools = no_of_schools

209 cell_ij.gov = no_of_gov

210 cell_ij.calculate_day_population ()

211 ithaca_day_pop[i,j]= cell_ij.day_population

212

33

2019 CMCM C. Chen, D. Pham, & W. Xu

213 # plot the ithaca day population

214 fig , ax = subplots ()

215 ignore_points = [(2,0) ,(3,0) ,(4,0) ,(5,0) ,(3,1) ,(4,1) ,(3,2) ,(4,2) ,(13,0) ,(13,1)

,(13,2) ,(13,3) ,(13,4) ,(12,1) ,(12,2) ,(12,3) ,(11,1) ,(11,2) ,(11,3)]

216 added_pop = (30000 - sum(ithaca_day_pop))/(ithaca_map_x*ithaca_map_y - len(

ignore_points))

217 ithaca_day_pop = ithaca_day_pop + added_pop

218

219 for point in ignore_points:

220 cell_ij = ithaca_map[point[1], point [0]]

221 cell_ij.day_population = 0

222 ithaca_day_pop[point[1], point [0]] = cell_ij.day_population

223 for point in ignore_points:

224 scatter(point[0], point[1], c=’r’)

225

226 cbar = ax.imshow(ithaca_day_pop ,vmin =0)

227 colorbar(cbar)

228 ax.set_xticks ([0.5+i for i in range (14)])

229 ax.set_yticks ([0.5+i for i in range (9)])

230 ax.set_xticklabels ([i for i in range (14)])

231 ax.set_yticklabels ([i for i in range (9)])

232 grid()

233 title(’Ithaca Day Population ’)

234 savefig(’day_population.pdf’)

235 show()

236

237 # plot the ithaca night population

238 fig , ax = subplots ()

239 cbar = ax.imshow(ithaca_population_map ,vmin =0)

240 colorbar(cbar)

241 ax.set_xticks ([0.5+i for i in range (14)])

242 ax.set_yticks ([0.5+i for i in range (9)])

243 ax.set_xticklabels ([i for i in range (14)])

244 ax.set_yticklabels ([i for i in range (9)])

245 grid()

246 title(’Ithaca Night Population ’)

247 savefig(’night_population.pdf’)

248 show()

249

250

251 #calculate the number of slabs in a cell

252 for cell in ithaca_map.flatten ():

253 cell.slabs = 0

254

255 lat_0 = ithaca_map [0 ,0].r0[0]

256 long_0 = ithaca_map [0,0].r0[1]

257 lat_1 = ithaca_map [8 ,13].r1[0]

258 long_1 = ithaca_map [8 ,13].r1[1]

259 lat_sep = (lat_0 - lat_1)/9

260 long_sep = (long_1 - long_0)/14

34

2019 CMCM C. Chen, D. Pham, & W. Xu

261

262 total_length = 0

263 all_slab_list = []

264

265 for u, v, k, data in ox.get_undirected(G).edges(keys=True , data=True):

266

267 lon1 = G.nodes[data[’from’]][’x’]

268 lat1 = G.nodes[data[’from’]][’y’]

269

270 lon2 = G.nodes[data[’to’]][’x’]

271 lat2 = G.nodes[data[’to’]][’y’]

272

273 grade_abs = data[’grade_abs ’]

274

275 orig_node = data[’from’]

276 target_node = data[’to’]

277

278 length_in_meter = data[’length ’]

279 length_in_feet = length_in_meter / FT_TO_METER

280

281 total_length += length_in_feet

282

283 no_of_slabs = length_in_feet/SLAB_LENGTH

284 all_slab_list.append(no_of_slabs)

285

286 coordinate_1 = (lat1 , lon1)

287 coordinate_2 = (lat2 , lon2)

288

289 ind_x1 = (lat_0 - lat1)// lat_sep

290 ind_y1 = (lon1 - long_0)// long_sep

291 ind_x2 = (lat_0 - lat2)// lat_sep

292 ind_y2 = (lon2 - long_0)// long_sep

293

294 same_cell = np.array ([ind_x1 -ind_x2 ,ind_y1 -ind_y2])

295 if ind_x1 <= 8 and ind_x2 <= 8 and ind_y1 <= 13 and ind_y2 <= 13:

296 if np.all(same_cell == 0):

297 ithaca_map[int(ind_x1),int(ind_y1)].slabs += no_of_slabs

298 elif sum(abs(same_cell)) == 1:

299 if abs(same_cell [0]) ==1:

300 max_x = max(ind_x1 ,ind_x2)

301 sep = ithaca_map[int(max_x),int(ind_y1)].r0[0]

302 ithaca_map[int(ind_x1),int(ind_y1)].slabs += no_of_slabs*abs((lat1

- sep)/(lat1 -lat2))

303 ithaca_map[int(ind_x2),int(ind_y2)].slabs += no_of_slabs*abs((lat2

- sep)/(lat1 -lat2))

304 elif abs(same_cell [1]) ==1:

305 max_y = max(ind_y1 ,ind_y2)

306 sep = ithaca_map[int(ind_x1),int(max_y)].r0[1]

307 ithaca_map[int(ind_x1),int(ind_y1)].slabs += no_of_slabs*abs((lon1

- sep)/(lon1 -lon2))

35

2019 CMCM C. Chen, D. Pham, & W. Xu

308 ithaca_map[int(ind_x2),int(ind_y2)].slabs += no_of_slabs*abs((lon2

- sep)/(lon1 -lon2))

309

310 ithaca_day = zeros ((ithaca_map_x , ithaca_map_y))

311 ithaca_night = zeros((ithaca_map_x , ithaca_map_y))

312 ithaca_slabs = zeros((ithaca_map_x , ithaca_map_y))

313

314 for i in range(ithaca_map_x):

315 for j in range(ithaca_map_y):

316 ithaca_slabs[i,j] = ithaca_map[i,j]. slabs

317 ithaca_day[i,j] = ithaca_map[i,j]. day_population

318 ithaca_night[i,j] = ithaca_map[i,j]. night_population

319

320 ithaca_priority = ithaca_slabs *(ithaca_day + ithaca_night)

321 # plot the ithaca priority score map

322 fig , ax = subplots ()

323 cbar=ax.imshow(ithaca_priority/np.max(ithaca_priority),vmin=0,vmax =1)

324 colorbar(cbar)

325 ax.set_xticks ([0.5+i for i in range (14)])

326 ax.set_yticks ([0.5+i for i in range (9)])

327 ax.set_xticklabels ([i for i in range (14)])

328 ax.set_yticklabels ([i for i in range (9)])

329 grid()

330

331 fig.suptitle(’Ithaca Priority Score’)

332 fig.savefig(’ithaca_priority.pdf’)

333

334

335 # perform clustering

336 # make training data for clustering

337 training_data = []

338 for i in range(ithaca_map_x):

339 for j in range(ithaca_map_y):

340 training_data.append ((i,j,100* ithaca_priority[i,j]))

341

342 # k-means first

343 kmeans = KMeans(n_clusters =4, random_state = 10).fit(training_data)

344 imshow(reshape(kmeans.labels_ , (ithaca_map_x ,ithaca_map_y)),cmap=’Accent ’)

345 savefig(’kmeans.pdf’)

346

347 # now gmm

348 gmm = GaussianMixture(n_components =4, random_state =10).fit_predict(training_data)

349 imshow(reshape(gmm , (ithaca_map_x ,ithaca_map_y)),cmap=’Accent ’)

350 savefig(’gmm_before.pdf’)

351

352 # gmm with human editing

353 gmm = GaussianMixture(n_components =4, random_state =10).fit_predict(training_data)

354 gmm = reshape(gmm , (ithaca_map_x ,ithaca_map_y))

355 gmm [6,12] = gmm [5,12]

356 gmm[6,3] = gmm[7,3]

36

2019 CMCM C. Chen, D. Pham, & W. Xu

357 imshow(gmm ,cmap=’Accent ’)

358 savefig(’gmm_after.pdf’)

359

360 # perturbations of results

361

362 # plot the priority map for noise perturbations

363 for snr in [0 ,0.01 ,0.05 ,0.1]:

364 ithaca_priority_noise = ithaca_slabs *(ithaca_day + ithaca_night)*(1+ random.

normal(loc=0, scale=snr , size=(ithaca_map_x , ithaca_map_y)))

365 imshow(ithaca_priority_noise ,vmin=np.min(ithaca_priority), vmax=np.max(

ithaca_priority))

366 title(r’$\sigma=’ + str(snr) + ’$’)
367 savefig(’priority_map_snr_ {}. pdf’.format(snr))

368 show()

369

370 # gmm clustering for noise perturbations in the priority score map

371 for snr in [0 ,0.01 ,0.05 ,0.1]:

372 training_data_noise = []

373 ithaca_priority_noise = ithaca_slabs *(ithaca_day + ithaca_night)*(1+ random.

normal(loc=0, scale=0, size=(ithaca_map_x , ithaca_map_y)))

374 ithaca_priority_noise = ithaca_priority_noise/np.max(ithaca_priority_noise)

375 for i in range(ithaca_map_x):

376 for j in range(ithaca_map_y):

377 training_data_noise.append ((i,j ,100* ithaca_priority_noise[i,j]))

378

379 gmm_noise = GaussianMixture(n_components =4, random_state =10).fit_predict(

training_data_noise)

380 gmm_noise = reshape(gmm_noise , (ithaca_map_x ,ithaca_map_y))

381 imshow(gmm_noise ,cmap=’Accent ’)

382 title(r’$\sigma=’ + str(snr) + ’$’)
383 savefig(’gmm_snr_ {}. pdf’.format(snr))

384 show()

385

386 # changes in weights of priority map

387 ithaca_priority_scaled = ithaca_priority/np.max(ithaca_priority)

388 for w in [0, 10, 50, 100, 1000]:

389 training_data_weights = []

390 for i in range(ithaca_map_x):

391 for j in range(ithaca_map_y):

392 training_data_weights.append ((i,j,w*ithaca_priority_scaled[i,j]))

393 gmm_weights = GaussianMixture(n_components =4, random_state =10).fit_predict(

training_data_weights)

394 gmm_weights = reshape(gmm_weights , (ithaca_map_x ,ithaca_map_y))

395 title(r’$w={}$’.format(w))
396 imshow(gmm_weights , cmap=’Accent ’)

397 savefig(’gmm_w_ {}. pdf’.format(w))

398 show()

399

400

401 #### END ######

37

	Executive Summary
	Problem Statement
	Notation
	Assumptions
	Sidewalk Slabs
	Causes of Stress
	Slab Repair

	Priority Score Algorithm
	Characteristic Lifetime of a Concrete Slab
	Source of Stresses
	Thermal Stress
	Pedestrian-Caused Stress
	Flowing Water-Induced Stress
	Tree Root Growth-Related Stress
	All Together Now

	First-Order Approximation
	Formalism
	Data and Implementation
	Results

	Optimal Contracts and Clustering
	k-means
	Gaussian Mixture
	Results

	Optimizing Slab Repair Costs
	Clarifications & Interpretations
	Setup
	Two-Slab Case
	Generalized Algorithms for Arbitrary Slabs

	Validity & Robustness Testing
	Priority Score Perturbation
	Weight of Clustering
	Optimizing Slab Repair Strategy

	Strengths & Weaknesses
	Priority Score
	Optimal Contracts and Clustering
	Optimizing Slab Repair Costs

	Conclusions & Future Work
	Python Code

