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Abstract

In this manuscript, we use a physical approach to determine the characteristic lifetime of a
concrete slab. Using this, the population density of Ithaca in the day and night, and the total
number of concrete slabs in a city block, we calculate the priority score of each city block. We
then clustered the city blocks by using the proximity of both physical distance and priority score
to minimize the transition cost, and therefore, the overall construction costs. Lastly, we used a
geometric approach inspired by concepts from special relativity to derive the constraining surfaces
on the solution space of the two-slab problem. Generalization to arbitrary number of slabs is then
established with proposal of 2 O(N?) algorithm to compute the optimal repair strategy.
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1 Executive Summary

Dear Mr. John Licitra, City of Ithaca Sidewalk Manager,

Tasked with helping the Ithaca Sidewalk Improvement team, we tackle some very important prob-
lems that are crucial in the goal of improving the sidewalks in Ithaca: determine areas requiring
attention, grouping areas of concerns for construction crews, and finding solutions to fix sidewalks
through raising, cutting, or replacing slabs.

Understanding that the city of Ithaca has been using an ad-hoc solution to determine priority score
of areas in Ithaca, we seek to develop a model of priority score that is based on physical laws. We analyze
all possible physical phenomena that can affect a sidewalk slab and found that only the population
density and number of slabs in each city block affects the priority score. So, we use population data,
Ithaca street map, locations of bus stops, government buildings, and schools to develop a priority
score map that reflects the real features of Ithaca city layout and the activities of Ithacans. With this
map, we determine that there are three hot spot regions that require high frequency maintenance care:
Collegetown, the Commons, and the area around Ithaca High School.

For our next task, to assign regions of the city to each construction crew, we used basic machine
learning techniques with human-assistance to find optimal contiguous regions for the crews. Here, we
find four contiguous, optimal regions to assign to construction crews that turn out to be quite similar
to the existing areas defined by the Ithaca Sidewalk Improvement program.

Then, we developed algorithms for determining the least costly set of repair operations to fully
fix sidewalks. Again, using motivation from physics, we develop constraints and explore all possible
solutions. We find two fast, inexpensive algorithms that come close to finding the best solution.

For the first two tasks, the largest limiting factor on our proposed solutions is by far the lack of data.
Having higher resolution population data and having more easily processible data on environmental
conditions throughout the city of Ithaca would allow us to broaden and refineour implementation.
Furthermore, our clustering of city blocks requires minor human assistance to find the best clustering
solution, which implies some degree subjectivity and lack of automation. In addition, the two algorithms
we develop for the last task, although fast, are not always guaranteed to be the optimal solution, but
only close to optimal.

With better data from the city of Ithaca, we can perform the analyses in this paper again, but with
greater resolution. We can draw specific routes for construction crews, create a map of maintenance
frequency for each street, and compile a list of repair actions for each street.

Despite the countless improvements that could be made, our modeling and methods provide superb
sidewalk-servicing solutions to the city of Ithaca, generating concrete results that bring us ever closer
to a sidewalk utopia — where sidewalks are bountiful and smooth.

Sincerely,
Calvin Chen, Dang Pham, & William Xu
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2 Problem Statement

We are tasked with addressing the sidewalk catastrophe in Ithaca and proposing solutions on how to
best identify and repair damaged sidewalks. Sidewalks can be damaged due to many different causes,
ranging from natural and environmental to human. Individual sidewalk slabs must comply with the
requirements set by the Americans with Disabilities Act (ADA). Due to the limited budget, noncom-
pliant slabs must be fixed as cost-effectively as possible once they are reported by the public through
complaints. Additionally, population-dense areas, schools, bus stops, and government buildings must
be prioritized which deciding which sidewalks to repair first. For the first task, we are commissioned
to present a prioritization scheme that indicates the order in which blocks of the city of Ithaca should
be repaired.

The logistics of construction must also be carefully managed. As it is costly to send construction
crews jumping around Ithaca to repair the most urgent sidewalks here and there, we must present
regions where construction crews can be deployed to minimize the costs due to moving equipment.
This is the second task.

Once a construction crew is deployed to its assigned domain, the specific repair methods must be
carefully considered to select the ones fit for the job that also keep costs down. Then, for the third
task, we are charged with determining the best course of action (or lack thereof) for each slab along a
city block, given all information about the sidewalk slabs along that block.

Concerns with rising costs, flat revenues, and other detrimental circumstances lends the City of
Ithaca to also task us with projecting budget increases over the course of the next 25 years. This is
the fourth task.

Recognizing that as undergraduates we only have so much free time on our hands, the City of Ithaca
requests that we consider three out of the four tasks presented above. In this paper, we discuss and
address the first three, hoping to confront and tackle the disaster of devastated sidewalks in the City
of Ithaca.

3 Notation

7: characteristic lifetime of a concrete slab

o: stress exerted on a concrete slab

— op: thermal stress
— ow: stress from pedestrians’ weight
— 0g: shear stress of fluid flowing along an inclined surface

— opg: stress due to tree root growth

E: Young’s modulus

a: coefficient of thermal expansion

T temperature
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e n: number of people on a slab

m: mass of a person

g: gravitational acceleration

A: area of a slab

e p: density of fluid

e d: depth of fluid

e O: running angle of a slab
e ¢: cross angle of a slab

e 2: vertical height of the center of the surface of the slab perpendicular to and from the surface of
the street

e 1/I': characteristic time of a destructive tree root growth event
e P: priority score
e N: population density

— Ngay: population density in the day
— Nhignt: population density at night

® ng.,: average number of slabs in a city block

4 Assumptions

City blocks: since our implementation requires the population map of Ithaca and we only have that
data on a grid of 9 x 14 cells, we are restricted to a city block at that resolution. Thus, our city block
is not the usual definition of a street block, but rather a city cell as shown in Fig. [Bal

4.1 Sidewalk Slabs

1. We assume that all concrete sidewalk slabs have the same consistency and are made of the same
uniform material, i.e. uniform concrete.

2. We assume all sidewalks in Ithaca are one slab wide.

3. We assume that all slabs are 4 ft x 4 ft, to comply with the requirement (2) of the ADA, from
personal experience, and out of simplicity.

4. We assume that all slabs are 5 inches thick, since they in reality vary from 4 — 6 inches thick [1].
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5.

We assume that the x and y positions of the slabs are irrelevant, since the stresses we consider
largely will not displace slabs in these directions. More importantly, the ADA compliance re-
quirements do not consider relative z and y displacement of slabs in its sidewalk compliance
requirements, so we can ignore them. Additionally, ADA requirement (2) is always satisfied,
since we assume all sidewalk slabs to be installed as 4 ft x 4 ft, and various stresses would not
cause them to be less than 4 ft wide.

. We assume that noncompliance with the ADA due to various sources of stress occurs relatively

sparsely, such that at any given point in time, the percentage of noncompliant slabs is small.
Then, we can model the breakage of slabs as a Poisson process.

As per the City of Ithaca Sidewalk Improvement Program |2, 3], Cornell University manages its
own sidewalks and walkways, so we do not consider the entire Cornell University campus in our
analysis.

4.2 Causes of Stress

We assume there are four primary source of stress exerted on a concrete slab: thermal stress, pedestrian-

caused stress, flowing water-induced stress, and tree root growth-related stress [4} |5].

1.

We assume that the thermal stress is caused solely by thermal expansion and contraction of the
concrete slab itself, and not due to adjacent non-concrete materials expanding and contracting
(e.g. water freezing, soil expanding and contracting). Although the other causes of thermal stress
are likely not negligible, we make this assumption for clarity and conciseness of our analysis.
Additionally, assuming these other materials are randomly and uniformly distributed throughout
Ithaca (this is largely the case for water and soil), we find in Sec. p| that the thermal stress is a
constant across all slabs anyway, so this assumption is in practice, irrelevant.

. We assume that the soil is uniform in composition and water content throughout Ithaca for

simplicity and due to time constraints, even though this is not the case [6].

. We assume that Ithaca is small enough to approximate the spatial temperature distribution as

uniform.

The average weight of a human in North America is 80kg [7].

. We assume that excessive weight loads are sufficiently rare occurrences that they have a negligible

contribution to the total stress on a sidewalk slab.

. We define a tree root growth event to be a change in the tree roots underneath a sidewalk slab

that would apply some stress on the slab, whether that is an increase in root mass that pushes
up on the slab in certain areas, or a root decay that causes a downward force to act on part of
the slab.

We assume that the density of trees throughout Ithaca is constant. We can see this visually in
the City of Ithaca’s interactive map of all of the trees in Ithaca [§].

3
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8. We treat tree root growth as a stochastic process, but since we assume a random, uniform
distribution, it does not depend on location. Thus, we can model tree root growth with a
characteristic time for one occurrence of growth.

4.3 Slab Repair

Throughout Sec. [7], we make the small angle approximation that a 2% slope is equivalent to 1/48.

5 Priority Score Algorithm

First, we identify the contributions to the damage of the physical condition of the slabs. Then, we in-
clude population density, which incorporates all of the other factors that play into the priority score. As
discussed in Sec. the proximity to schools, bus stops, and government building is incorporated into
the population density. Additionally, we assume that the number of complaints is directly proportional
to the population density, since if there are more people, there are more likely to be more complaints
about broken slabs. Thus, population density and physical condition of the slabs are sufficient to
describe the priority of a city block.

5.1 Characteristic Lifetime of a Concrete Slab

Experiments have shown that repeated stress on a concrete slab can cause it to break [9]. Therefore,
we assume that a concrete slab can endure a fixed amount of stress over its lifetime, or in other words,

/ o(t)dt = const.
0

where 7 is the lifetime of a concrete slab and o(t) is the stress exerted on the slab as a function of time.
Thus, if we average o(t) over the life time and express that as g, we can write

\]
®
Qi —

5.2 Source of Stresses

We identified the four primary sources of stress on a concrete slab as the following:
1. Thermal expansion and contraction
2. Pedestrians’ weight
3. Water flowing down a inclined surface (shear stress)

4. Tree root growth
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5.2.1 Thermal Stress

Thermal stress is stress caused by a change in temperature of a material. This stress can lead to
fracture or plastic deformation. A material will expand or contract depending on the material’s thermal
expansion coefficient. As long as the material is free to move, it can expand or contract freely without
generating stress. Once this material (in our case, the concrete sidewalk slabs) is attached to a rigid
body at one end, thermal stress can be produced. The thermal stress o7 can be calculated from the

following formula [10]:
or(t) = EaAT(t)

where F is the Young’s modulus of the material, « is the coefficient of thermal expansion of the material,
and AT'(t) is the temperature difference as a function of time.

The Young’s modulus measures the “stiffness” of a material, or how resistant to deformation a
material is. The Young’s modulus of concrete is typically in the range of 20-30 GPa |11]. The coefficient
of thermal expansion measures the change in linear size of a material under heating and cooling. The
typical coefficient of thermal expansion of a concrete is around 107° °C~! [12]. The averaged annual
temperature variation is around 25°C and the averaged diurnal temperature variation is around 10°C
in Ithaca [13]. Using these values, we can estimate 67 = FaAT. Estimate AT to be around 1°C, then
or is around 2x10°-3x10° Pa (cf. atmospheric pressure, approx. 10° Pa).

5.2.2 Pedestrian-Caused Stress
The stress due to pedestrians’ weight, denoted oy, can be calculated using the following formula:

n(t)mg
A

Uw<t) =

where n(t) is the number of people standing on a slab at a time ¢, m is the weight of one person,
g ~ 10 m/s? is the gravitational acceleration, and A is the area of a slab. With the average weight of
Americans at 80 kg [7], and the slab size (4 x 4’ ~ 1.5 m?), we can estimate oy = nmg/A. Estimate
n to be 1 (i.e. assume in the worse case that there is on average 1 person standing on every slab at
every point in time). Then, gy is around 500 Pa.

5.2.3 Flowing Water-Induced Stress

The shear stress of a liquid flowing down an inclined surface, denoted og, can be calculated according
to the formula in [14] simplified using the free-body diagram in Fig. [1}

os(t) = pgd(t)siné

where p is the density of the fluid, g ~ 10 m/s? is the gravitational acceleration, d is the depth of the
fluid, and € is the inclination. For water (p = 1000 kg/m®), we can estimate 65 = pgdsinf. Estimate

d = 1 cm, then for a slope of 10%, g is around 10 Pa.
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Figure 1: Free-body diagram of a volume of liquid flowing down an inclined surface. The shear stress
og can be derived from equating the shear stress with the parallel component of gravity.

5.2.4 Tree Root Growth-Related Stress

Let the characteristic time for one occurrence of destructive tree root growth be 1/T". Thus, we can
view the tree root growth-related stress, denoted o, as a sum of Dirac delta functions:

- k
aﬂw:CE:ap—f>

k=1

where ¢ is a constant that measures the total stress released in one tree root growth event. Therefore,
the average stress o is cI’.

5.2.5 All Together Now

Thus, combining all four of the stresses, we arrive at the formula for calculating the characteristic

lifetime of a concrete slab: ]

or +ow +o0g+op

T X

5.3 First-Order Approximation

In principle, a7(z,y) will be a function of position if the temperature is not uniform across Ithaca.
Additionally, ow (NN) will be a function of population density N, 6¢(f) will be a function of the slope
of the slab, and gg(z,y) will be a function of tree density across Ithaca. However, since we assume
that Ithaca is small enough to approximate the spatial temperature distribution as uniform, & is then
a constant. Moreover, because we assume that the tree density is constant across Ithaca, o is also a
constant.

From Sec. [5.2], we can see that the typical value of g7 is at least 2 orders of magnitude larger than
that of oy and is at least 4 orders of magnitude larger than that of 5. Therefore, we can approximate
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7 as the following:

T(N,0) x L +0 (U—W> = const. + O <U—W>

or +op OoT + OR or +0o0p

Thus, to the first order, the characteristic lifetime of a concrete slab is just a constant across Ithaca.

5.4 Formalism

We assert that the priority score should be proportional to the probability that one of the slabs in
the city blocks fails to comply with the ADA. We assume that this failure is a Poisson process (see
Sec. , so the probability of an individual slab failing is simply the inverse of the lifetime 1/7 of a
slab. Therefore, the probability of any one of the slabs failing in a city block will be the sum of this
probability over all slabs in the block.

We also assume that the number of complaints the Ithaca government will receive is directly pro-
portional to the population density in the block, since the more people there are, the more likely a
person will discover slab failures in a block. Therefore, the priority score will also be proportional to
the population density of the city block.

Thus, we define the priority score P of a city block as

1
P=N -
I
slabs
Using our approximation that 7 is a constant from Sec. and our assumption that the population
density is equal to the average of day-time population density and night-time population density N =
(Nday + Nnight)/2. Denote the total number of concrete slabs in a city block as ngans, we can rewrite

P x (Nday + Nnight)nslabs~

Note that the proportionality constant does not matter, since it is the same for all city blocks, and
the priority score is a relative value for comparison between city blocks.

5.5 Data and Implementation

Roads of Ithaca are created using the Python library osmnx using road data from OpenStreetMap.
With this, we create the map of Ithaca streets (shown in Fig. [2| below), calculate the length of the road,
and subsequently how many slabs of sidewalk per street (using the fact that a slab is 4 ft in length).
The Ithaca population map is a 9 x 14 grid of data taken from CensusViewer [15] and Pham et al
[16], shown in Fig. [3| below. All of these maps are restricted within the rectangular region bounded by
latitude, 42.4613 < x < 42.4278, and longitude, —76.5216 < y < —76.47.

For the day population Nga.y, we use schools, bus stops, and government buildings. The number of
each type of building is obtained from OpenStreetMap via the Python library osmnx. The population
values for each are as follows:

e Each school has approximately 400 students, except for Ithaca high school, which has 1360
students |17, |18].
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Figure 2: Street map of Ithaca. Blue dots are nodes where streets start and end.

e A bus stop serves on average 30 people per day (this is an estimate).

e Ithaca has 303 government employees [19]. Dividing this over all the government buildings gives
us about 34 employees per government building.

The Ithaca day population for each cell at location (, j) in the 9 x 14 grid is:

Nday,Lj = 400Nschool,i7j + 3O]\/Ybus stop,i,7 + 34Ngovernment,i,j

where Nychool,i i, Nous stop,i,j> a1d Ngovernment.i,; are the number of schools, bus stops, and government
buildings in a cell. Note aside from Ithaca high school, we consider there to be 400 students per school.
We count post offices, the town hall, the courthouse, police stations, and fire stations as government
buildings. Note that we only find these buildings in cells that do not contain Cornell. Thus, this day
population map excludes Cornell.

For the night population Ny;en¢, we use the Ithaca population map. This population includes Cornell
students living in Collegetown (where the city does maintain sidewalk conditions).

The software implementation is as follows:

1. Retrieve the coordinates of all roads in Ithaca, and calculate the number of slabs each road has
using its length (Fig. [2)).

2. Discretize the Ithaca road map into a 9 x 14 grid of cells. Calculate the number of slabs in each
cell to get Nglaps i j-

3. Retrieve the location and population of all of Ithaca’s schools, bus stops, and government build-
ings. Calculate Nay i ; in each cell (Fig. [Ba)).

4. Use data from the Ithaca population map to get Npignei,; (Fig. [BD)).

5. Calculate the priority score for each cell using the formalism developed in the previous section.
This gives us the priority score matrix, as desired. See Fig. [4]
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(a) Ithaca day population Ngay. The one yellow cell  (b) Ithaca night population Nyigne. The yellow regions
corresponds to Ithaca High School, which has the correspond to the Commons and Collegetown.
highest daytime population.

Figure 3: Ithaca population during the day and night. The color scale is the number of people in that
cell. The red dots are located in cells where population calculations were excluded (Cornell and Cayuga
Lake are ignored). Comparing these two plots with Fig. [2 we can see how each cell corresponds to a
region in Ithaca.

5.6 Results

The priority score map is shown in Fig. [l Each cell represents a city block, as defined in Sec. [4
There are a few interesting observations to notice. First, per our definition, the priority score is in
units of population/time. Thus, the priority score is a direct metric of the frequency with which a
region requires sidewalk maintenance, i.e. the priority map depicts regions based off of how often it
needs attention. Second, by comparing with Fig. [2] we notice that there are two main regions requiring
attention. The small yellow region that requires the most attention corresponds to Collegetown, and
the slightly larger green area that requires the second most attention corresponds to the Commons.
This makes sense because these are areas with greater population density. Third, the deep purple areas
are either Cornell, Cayuga Lake, or very low population places. Again, this makes sense since these
are either areas that do not require regular maintenance due to lack of population, or areas where the
City of Ithaca does not manage sidewalks.

6 Optimal Contracts and Clustering

We can approach problem (b) — optimal contracts — by utilizing the priority score matrix from above
with a clustering algorithm. Then, the problem becomes unsupervised clustering on 3-space with
training data (7, j, wP;;) where P,; the priority score of each city block, (4, j) the location of the city
block, and w the weight of the priority score (discussed below).

It is given in the problem statement that the transition cost adds extra time and money. Thus,
the goal is to minimize the number of transitions by creating large connected regions of city blocks in



2019 CMCM C. Chen, D. Pham, & W. Xu

Ithaca Priority Score

1.0

0 N o U1 A W N O

01 2 3 4 5 6 7 8 9 1011 12 13
0.0

Figure 4: Priority score map of Ithaca. Color scale is based on the normalized priority score, ranging
between 0 and 1.

(4, 7)-space that are weighted by the priority score w - P;;. We consider a region to be connected if all
cells are adjacent to at least one other cell of the same region. Two cells are considered adjacent if
their sides or corners are touching (i.e. two cells can be diagonally connected, since it is fairly quick to
pass along roads from one cell to another along the diagonal point).

Here, w is the factor of how much we want to weigh the priority score versus the spatial coordinates
(i,7). A weight of w = 0 implies that only spatial coordinates are important, and clustering should
be based solely on position. For very large w, instead, priority score is considered more important,
and clustering is based primarily off of priority score. We chose w = 100, since it gives us the best
clustering. (See Sec. for the effects of w on the clustering results.)

Thus, the training data (7, j, wP;;) allows us to create clusters based on the need of a region. As a
result, a given city block is grouped not only by how close it is to another block, but also by the number
of noncompliant slabs. This has an interesting consequence: each construction crew is associated with
a different frequency of noncompliance and therefore repair. For example, if we have 4 construction
crews (i.e. 4 clusters), then we will have one “high-intensity” crew, which services a small area that
has a large number of noncompliant slabs per unit area; two “medium-intensity” crews that service a
medium-sized area with a medium number of noncompliant slabs per unit area; and one “low-intensity”
crew that services a large area with a small number of noncompliant slabs per unit area.

The (human-assisted) algorithm that we are proposing to group city blocks is then:

1. Choose how many clusters we want on the map. This corresponds to the number of construction
Crews.

2. Create the priority score matrix with elements F;;. Create the training dataset for clustering with
each datapoint (i, j, wP;;).

3. Cluster the dataset using an unsupervised clustering algorithm.

10
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4. Manually alter the clustering if anything is obviously not well-clustered.

The last step is necessary, since we have an unsupervised clustering algorithm, so some abnormal
behaviors might appear. Note that this change must not be excessive (no more than a few cells) or we
might as well just do this all manually!

6.1 k-means

The simplest approach is a centroid-based clustering algorithm: the algorithm initializes k& centroids
and k clusters associated with these centroids, and then finds:

k
arg;ninz > = will?

=1 XESi

where p; are centroids, and x is a data point in cluster S;. This is known as the k-means clustering
algorithm.

The argument in the equation is also known as the inertia or the within-cluster sum-of-squares.
Note that as a result of the way the k-means algorithm is constructed, it requires only one parameter,
the number of clusters k. We use the implemented k-means++ initialization for faster convergence, and
the scikit-learn’s k-meand!] implementation.

It is important to note that in our (i, j, P;;) parameter space, F;; (units of population/time) does
not have the same units as (i,) (unit of distance). As a result, k-means is not the best clustering
technique to use because we cannot weigh these parameters with different units on equal footing.

Running the k-means clustering algorithm on our data, we obtain the following map of Ithaca:

Figure 5: k-means clustering for (i, j, P;;) space with k = 4 (i.e. four construction crews).

lsklearn.cluster.KMeans

11
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6.2 Gaussian Mixture

The Gaussian mixture mode]ﬂ is a Gaussian, probability-based clustering algorithm. Data points are
generated from a mixture of Gaussian models. Each data point is given a probability of which cluster
(i.e. mixture) it belongs to. This method is a soft clustering algorithm (in contrast to the hard clustering
method, k-means, described above), since it gives a probability of each point belonging to each cluster
instead of definitively assigning each point one cluster. Each data point is then assigned to the cluster
with the highest probability.

First, let us consider a dataset X with N data points, with each data point x;, Vi € [1, N| having
dimension d. Here, we are working in d-space. For a multivariate Gaussian distribution, we have:

5 ) )

1
CIED e (=

where x; € R? is a data point vector, ;1 € R? is the mean, ¥ € R%? is the d x d covariance matrix, and

N (xilp, ) =

|X| = det(X) is the determinant of the covariance matrix.
For a mixture of K Gaussians, we take the superposition:

fxi) = ) weN (x|, X)

where wy, is the weight of the kth Gaussian, and K is both the number of Gaussians and the number
of components.
We require the following conditions for the weights:

k=K

0>wp>1, Y wp=1
k=1

The likelihood function is defined as the combined probability of all data points x;, Vi € [1, N]:

N N K
L(X) = H fxi) = H wiN (%3] e, i)
n=1 i=1 k=1

— ImL(X)=) In (Z wkN(Ximk’Zk‘))
i=1 k=1

The goal is to maximize this likelihood function, i.e. use it as the objective function:

arg max L£(X)
Wiy ooy 2k
With the log-likelihood given, one possible way to do this is Maximum Likelihood method (finding
parameters such that the likelihood function is optimized). To do this, we take the derivative with
respect to the variables p© and Y, set that equal to zero, and then find p and . However, this can be

2sklearn.mixture.GaussianMixture
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very difficult given the form of the log-likelihood that we have. Another approach is the Expectation-
Maximization (EM) method, which is an iterative algorithm. The derivation of the algorithm is fairly
involved, so we will just present the algorithm itself. Further information on the theorem derivation
can be found in Bishop . The EM algorithm is:

1. Initialize pg, X, and wy, (randomly). Find the log-likelihood with the initial parameter values.

2. Compute the posterior probabilities 7z, (1, Xx) using g, g, and wy with:

ol P Zi=E)P(Zi=k)  wplN (@i, X))
P =) =B = R T B NV . S0

3. Find the new estimates y;, X}, and w), with:

i, = Z%} Yz, (ks Bk) 5
> iz V2 by Zie)
5 = Zfil Vz; (MkaNEk)(xz — ) (g — )T
> i1 V7 (ks Z)

N
1
We = o ;VZi(Mk, k)

4. Using the newly found puj, ¥}, and wj, repeat steps 2 and 3 until a set of parameters that is

acceptable within some predetermined e precision is found.

Running the Gaussian mixture algorithm on our data, we obtain the following maps of Ithaca:

0w N oo v~ W N = O
0w N oo U~ W N H O

(a) The “raw” Gaussian mixture. (b) The human-assisted Gaussian mixture.

Figure 6: Gaussian mixtures for the (4, j, P;;) space with & = 4 components. On the left, two cells
are unconnected with the rest of their region. On the right, after minor manual edits, all regions are
connected now.
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6.3 Results

We experimentally determine k& = 4 to be the optimal number of clusters, hence, the plots depict
k-means and Gaussian mixture results for k£ = 4.

The k-means result in Fig. |5|shows some promising clustering. In particular, the algorithm correctly
identifies the “hot spot” of Collegetown and the center of the Commons. Furthermore, the regions are
fairly contiguous, almost satisfying one of our initial condition that the city blocks for one contractor
should be connected. However, it is not good enough for us to go in and correct the disconnected cells
manually (we will have to change about 8-10 blocks, which is a lot).

The Gaussian mixture clustering in Fig. [6] shows an obvious improvement over that of k-means. We
can clearly see that the cluster regions in Fig. are “almost” contiguous. Here, we can use human
assistance to change only two blocks to make the regions completely connected. Fig. [6b] shows the
results after this manual step. Thus, with £k = 4 components, we clearly have four regions for the
contractors.

The results in Fig. [6D] is very interesting. The first construction crew working in area C is the
aforementioned “high-intensity” crew. They need to repair more sidewalks per cell per unit time, but
cover a much smaller region. The contractors in area A and B come in second and third in terms of
work frequency, respectively. They are the “medium-intensity” crews, covering larger range, but also
having to repair fewer sidewalks per cell per unit time. Lastly, area D is the region where the sidewalks
per cell per unit time that need to be repaired is very low. That is, for area D, the City of Ithaca only
needs to deploy a construction crew to each cell very rarely. Thus, they can cover a larger range over
a longer time scale.

It is important to note that the areas that we are proposing here are very similar to the cluster of
areas that the Ithaca Sidewalk Improvement program are currently having |2, |3]. The areas proposed
by the Ithaca Sidewalk is reproduced from [2] in Fig. . Area 5 corresponds to region D, area 3 and 1
correspond to A and B, and 2 corresponds to C.

Figure 7: The Ithaca Sidewalk Improvement Program area cluster.
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7 Optimizing Slab Repair Costs

A slab can be uniquely defined by three variables: the elevation of the center of the slab z, the angle
of the running slope of the slab 6, and the angle of the cross slope of the slab ¢. Then, any slab can
be represented by a point in z — 6 — ¢ space. We call the z — 6 — ¢ space point representation of a
given slab that slab’s parameter-point. We want to find an optimal algorithm that most cost-effectively
employs the minimum changes in z, 6, and ¢ of all slabs on a given street so that it meets the ADA
requirements.

7.1 Clarifications & Interpretations

For the raising repair method, we interpret “raising” to mean changing to soil levels beneath a given
slab such that we can change the z, 6, and ¢ values of the slab to be whatever we want (i.e. “raising”
means we can both physically raise and lower the slab).

For the cutting repair method, we interpret “linear foot” to be along the length dimension of a slab,
parallel to the street. We also interpret “at most 2 inches” to refer to the depth of the slab. Since a
slab is 4 ft x 4 ft, the cost of cutting a slab is $16 - 4 = $64 on average, while the cost of raising a
slab will be $5.13 - 16 = $82.08. Additionally, replacing a slab costs $22 - 16 = $352. Thus, it is always
cheaper to cut a slab than raise a slab, and it is always cheaper to raise a slab than replace a slab.

7.2 Setup

Now, we just need to determine the conditions under which each repair method is employed. Clearly,
if a slab is cracked, it cannot be fixed by cutting or raising, so it must be replaced. However, if a slab
is not cracked, it can always be fixed by either cutting or raising, since both cutting and raising are
capable of adjusting both angle and elevation (note that, as per our assumptions, elevation, i.e. the
z-direction, is the only aspect of position that we need to consider). So, we need to determine the
conditions (of an uncracked slab) under which we are able to fix with cutting, and the conditions under
which no repairs are necessary at all.

Multiple ADA compliance violations can be fixed at once with one carefully planned cut, so we can
consider ADA requirements (3), (4), and (5) togetheifl] Any slab that cannot be fixed with one cut
must be raised. So, we must determine the possible z, 8, and ¢ values of a given slab that can be fixed
with one cut. To do this, we find the set of points in z —  — ¢ space that are considered “good” (based
off of the ADA requirements), in that they do not need any repairs. Then, we find the set of points
that are considered “cuttable”, in that given the constraints on cutting, and the relationships between
z, 0, and ¢, we can move any point in that set into the “good” region. The remaining set of points in
z — 0 — ¢ space must be raised.

We first consider the simplest case of a street with only two slabs.

3Note that requirement (1) only applies for cracks, which require slab replacement. We assume the slabs are all 4 ft
x 4 ft so ADA requirement (2) is automatically satisfied.
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7.3 Two-Slab Case

Let the first slab have its parameter-point located at the origin of z — 6 — ¢ space. We want to find the
region in which the second slabs lies where no repair action is required, and the setup satisfies ADA
requirements.

First, we can characterize the cutting into two categories: cuts that only adjust the height z of a
slab, and the cuts that adjust the angles 6 and ¢. Since we are only allowed to cut at most 2 inches
into the slab, we know that the change in height for a pure z correction has to be between 0 and —2
inches. Similarly, an angle correction has to have sinf,sin¢ € [—2/48,2/48], which corresponds to a
change in slope of -4% to 4%.

48 in. 48 in.

2 1in. -

Figure 8: Two different possible cuts. Left: a cut that only corrects for z. Right: a cut that corrects
for 0 and/or ¢. We can see that if we want to correct for 6, ¢, z must change as a result.

However, from Fig. |8 we can see that in order to correct for § and/or ¢, we must simultaneously
change z. Thus, we can draw out a region in the z — 6 — ¢ space that represents the possible parameter-
points reachable by cutting a slab with parameter-point at the origin. Similarly, we can also draw out a
region which represents the possible original parameter-points of a slab that has already been cut and
now has its parameter-point at the origin. Fig. [9] depicts these two regions, with the first one in blue,
and the second one in red. We can see that the shape of these regions when projected onto the z — 6
plane and z — ¢ plane are rhombuses. It is not hard to show that in the full 3D z — 6 — ¢ space, the
shape will be an octahedron. Taking inspiration from the future/past light cones in special relativity, we
will call these regions the future-cuttable octahedron (FCO) and the past-cuttable octahedron (PCO),
respectively.

With this in mind, we can construct the repair decision map, i.e. a map that shows the region in
which each repair method is optimal (no repair required, cutting, and raising). First, let’s consider the
z — 6 plane. Given the ADA requirements (3)-(5), it is easy to find the region where, if the parameter-
point of the second slab is located in that region, the second slab does not require any repairs. This
region is depicted by the shaded parallelogram in Fig. [I0] Call this region the “good” region, denoted
by €. Call the region where, if the parameter-point of the second slab is located in that region, the
second slab can be repaired by cutting, the “cuttable” region. Then, to find the cuttable region, we
can exploit a common trick in special relativity for causality: find the union of all of the PCO on the
boundary of the good region. Or in mathematical terms: for all z; € 92, the region is given by

|J PCO()).

;€00

Fig. [10[ shows the repair decision map with the shaded good region and cuttable region.
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past-cuttable
octahedron

0,9

future-cuttable

octahedron

Figure 9: The region spanned by the parameter-points reachable by cutting a slab with parameter-
point at the origin is marked in blue and is called the future-cuttable octahedron (FCO). The region
spanned by the possible original parameter-points of a slab that has already been cut and now has its
parameter-point at the origin is marked in red and is called the past-cuttable octahedron (PCO).

raising

48sinf

e

Figure 10: Repair decision map on the z — 6 plane. The shaded region is the good region. The cuttable
region is also shown. This area can be obtained by taking the union of all PCO that starts from the
boundary of the shaded region.

Similarly, we can calculate the repair decision map on the z — ¢ plane shown in Fig. [I1} Here, the
good region is a hexagon. From the z — # plane and z — ¢ plane repair maps, we can generate the full
repair decision map in 3D as shown in Fig. The good region is a slanted hexagonal prism as shown
on the left side of Fig.[12] The cuttable region is the football-shape on the right side of Fig.

Thus, the optimal strategy for fixing a two-slab street is outlined below:

1. Check for any cracked slabs. If a slab is cracked, replace it.
2. Plot the parameter-point of both slabs in z — 6 — ¢ space.
3. Draw out the repair decision map around both of the parameter-points.

4. If the parameter-point of one slab lies in the good region of the other slab, then no repair is

17



2019 CMCM C. Chen, D. Pham, & W. Xu

necessary.

5. If the parameter-point of one slab lies in the cuttable region of the other slab, then we cut the
first slab.

6. If neither of parameter-points of the two slabs lies in each other’s cuttable region, then we raise
one of the slabs.

zZ

3__

raising

2__

14 cuttable
I I m I I I 96sing
1 ~ A T

-1+

Figure 11: Repair decision map on the z — ¢ plane. The shaded region is where no repair is required.
The region which can be fixed by cutting is shown. This area can be obtained by taking the union of
all PCO that starts from the boundary of the shaded region.

N

. s

Figure 12: The full 3D repair decision map. Left: the good region. Right: the cuttable region. This

region can be obtained by taking the union of all PCO that starts from the boundary of the embedded
good region.

The pseudo-code for this algorithm is shown in Algo. [I} This algorithm will always allow us to use
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the cheapest way to repair the slabs. Using this algorithm as a basis, we can generalize to the case of

an arbitrary number of slabs.

Algorithm 1: Algorithm to determine the repair action for a slab i, given the good and
cuttable regions of another slab j, assuming the slab is not cracked. If it is cracked, the only
available action is to replace it with cost = 352. Cost is in US$ for one full slab.
1 function action (P, Gy, €2;);
Input : point P, = (z;,6;, ¢;), G, the good region of point j, and 2; the cuttable region of
point j
Output: cost, action

cost : =0
action := None
if P, € G then
cost ;=0
action := No action for block 7
Ise if P, € 2; then
cost := 64
action := Cut block 7 so that P, € G
10 else
11 cost := 82.08
12 action := Raise block 7 so that P; € G;
13 return cost, action

© w N o ok~ W N
@

7.4 Generalized Algorithms for Arbitrary Slabs

Using the simplest-case algorithm established in Sec. [7.3, we propose two algorithms with complexity
O(n?) that will return the repair action, and its associated cost, on each slab on a street with an
arbitrary number of slabs.

The first algorithm (Algo. [2]) uses a sequential reference slab to generate the good region and the
cuttable region. For all neighboring slabs, we use Algo. [1| to find the optimal action for the two slabs
and add up the cost of a full iteration over all slabs on the street. Then, we loop through all possible
starting points of our iterations to give the minimum cost.

The second algorithm (Algo. [3]) uses an absolute fixed reference point to generate the good region
and the cuttable region. For all slabs, we use Algo. [I] to find the optimal action for the slab with respect
to the absolute reference slab and add up the cost of a full iteration over all slabs on the street. Then,
we loop through all possible starting points of our iterations to give the minimum cost.
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Algorithm 2: First algorithm to find the minimal solution for fixing slabs that are not cracked,
in a sequential order. If a slab is cracked, replace it. G the good region of point j, and (2,
is the cuttable region of point j. These can be calculated from point P; through the process
described in section [T.3]
1 function sequential referencing (P);

Input : P - list of slab points (z;,6;, ¢;) that are not cracked

Output: cost, sequence of action A

2 min_cost := oo
3 min_action := { }

4 N :=|P|

5 for i € [0, N —1] do

6 cost :=0

7 action_sequence := { }

8 ji=1

9 while 3 unchecked slabs do

10 cost_temp, action_temp := action(Pj1, Gy, §2;)
11 cost := cost + cost_temp

12 action_sequence := action U action_temp
13 j := next unchecked slab

14 end

15 if cost < min_cost then

16 min_cost := cost

17 min_action := action_sequence

18 end

19 end

20 return min_cost, min_action
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Algorithm 3: Second algorithm to find the minimal solution for fixing slabs that are not
cracked by comparing it to a fixed, reference slab. If a slab is cracked, replace it. G; the good
region of point j, and ; the cuttable region of point j. These can be calculated from point
P; through the process described in section

1 function fixed referencing (P);
Input : P - list of slab points (z;, 0;, ¢;) that are not cracked

Output: cost, sequence of action A
2 min_cost := oo
3 min_action := { }

4 N :=|P|

5 forie [0, N —1] do

6 cost :=0

7 action_sequence := { }

8 | forj€[0,N—1] AND j #ido

9 cost_temp, action_temp := action(P;, G;, €2;)
10 cost := cost + cost_temp

11 action_sequence = action U action_temp
12 end

13 if cost < min_cost then

14 min_cost := cost

15 min_action := action_sequence

16 end

17 end

18 return min_cost, min_action
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8 Validity & Robustness Testing

8.1 Priority Score Perturbation

Since the result for clustering in Sec. [6] depends heavily on the priority score, we introduce a random
perturbation of the priority score to see its effect on the clustering for optimal contracts. From our
definition of priority in Sec. [f, these perturbations can be interpreted as follows:

1. An incorrect estimation of the population of each city block.
2. An incorrect estimation of the total number of slabs in each city blocks.

3. Any sort of incorrect estimation in determining the stress of slabs in a given city block, including
perturbations from the second order effects (e.g. pedestrian-caused stress and flowing water-
induced stress) and incorrect assumptions that the stress is uniform across the city.

The perturbation is introduced by the following formula:

P/ = Pw(l -+ eij)

v

where P
random variable drawn from a normal distribution with mean p and standard deviation 0. We use
three different values for o: o = 0.01, 0.05, 0.1. The perturbed priority score maps are shown in Fig.

We can see that as ¢ increases, the priority score map differs more from the unperturbed (o = 0) map.

is the perturbed priority score at cell (¢,7), P;; is the original priority score, and ¢;; is a

0=0.01

1.0

0.8

® N o U A~ W N = O
® N o U A W N = O

0.6

0.4

0.2

0.0

©® N O U A W N = O
©® N o U A W N H O

Figure 13: The perturbed priority score map with Gaussian noise of o = 0 (unperturbed), 0.01, 0.05,
and 0.1. We can see that as o increases, the priority maps differs more from the unperturbed map.
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We run the Gaussian mixture algorithm for clustering using these perturbed priority score maps.
The result is shown in Fig. We can see that the clustering is not affected by the given perturbation.
This result shows that our clustering algorithm is a robust algorithm that can withstand perturbation
up to o = 0.1. This also justifies our first order approximation of the lifetime of a concrete slab in
Sec. We stated that the typical value of the second order effect of stresses is at least 2 orders of
magnitude less than the primary source of stress (thermal stress). Our result of robustness analysis
shows that the clustering result stays the same up to a perturbation of ¢ = 0.1. This indicates that
even if we underestimate these second order effect by an order of magnitude, it is still safe to ignore
these secondary effects.

0=0.01

® N o U A W N H O

0
1
2
3
4
5
6
7
8

® N o U M W N H O

Figure 14: Result of clustering using Gaussian mixture with the perturbed priority score map. We can
see that the clustering result is invariant under a perturbation of o up to 0.1.

8.2 Weight of Clustering

As we stated in Sec. @ we cluster city blocks in the (4, j, P; ;) space. However, the units for (4, j) and P,
are different. The units for 7 and j are distance, while the units for Pj; are arbitrary. If the units of the
parameter space are not the same for clustering algorithm, then there is an additional degree of freedom
which corresponds to the weights which we can assign to each parameter. In mathematical terms, we
can choose any metric for the parameter space. Therefore, to study the effect of this additional degree
of freedom on the clustering result, we alter the weight w of the priority score when the data set is
passed into the clustering algorithm. We define the weight as the following: for any two points x,y in
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the parameter space, the distance between x and vy is given by:
D(x,y) = /(i = iy)2 + (G — )2 + 02 (P, — P,)?

In other words, the weight w changes the importance of the priority score. Clustering with a larger

weight value places more importance on the priority score.

Fig. [15|shows the resulting clustering for weights w = 0, 10, 50, 100, 1000. As expected, when w = 0,
the clustering algorithm groups city blocks based solely on the physical distance. As w increases, the
clustering becomes more and more dominated by the priority score. When w = 100, the clustering
result is dictated primarily by the priority score.

® N o U A W N H O
S S

® N o u A W N H O
® N o U A W N = O

® N o U A W N = O

Figure 15: Gaussian mixture cluster results for different priority score weights.

8.3 Optimizing Slab Repair Strategy

The optimality of both Algo. [2] and Algo. [3] can be easily tested by considering all possible sequence of
actions. For N slabs on a street, both algorithms only test N possible sequences and find the minimum
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of case of those N sequences. However, there are 3 possible actions for all slabs: no repair, cutting, and
raising. In addition, the action of raising can give any possible value in the z — # — ¢ space, and the
action of cutting can give any value in the FCO, which is a subset of the 2 —60 — ¢ space. Therefore, each
of the 3%V sequence of actions are embedded in a 3VD space. The naive way to search for the optimal
solution requires a computation time of 3% - 3V/% where 6 is the resolution of the z — § — ¢ space. If we
want a solution within a smaller tolerance of the true minimum, then we will need a higher resolution.
However, the higher the resolution, the more computationally expensive the algorithm becomes.

On the other hand, our proposed algorithms are computationally cheap, even if not guaranteed to
give the global minimum solution. Nevertheless, from our rigorous analysis in Sec. [7.3] our algorithms
provide some degree of optimality.

9 Strengths & Weaknesses

9.1 Priority Score

The primary strength of our priority score analysis is that we use a physics-based analysis that has its
basis in few assumptions about the various potential causes of slab stress. Through this physics-based
analysis, we rigorously demonstrate our formalism and validity of our implementation. The validity of
our implementation and analysis is further reinforced in Sec. 8.1}

Our priority score analysis does not have many weaknesses, but it has some limitations. The primary
limitation is the failure to directly apply much of the data that was available and could have been used
to more accurately determine the slab stresses across Ithaca. For example, we were able to find very
detailed tree 8] and soil [6] data that, with more time, we could have incorporated into our model to
produce a more accurate priority score map. However, these other effects must be very large in order
to change our priority score map, as Sec. shows.

9.2 Optimal Contracts and Clustering

The first and most important strength of using unsupervised clustering on the (4, j, wP;;)-space data is
the semi-automation of the process. In this sense, we are able to combine the power of unsupervised
clustering with the human ability to recognize clustering patterns. By using the (4, j, wP;;) parameter
space, we are balancing the weight of spatial closeness and priority. Thus, implicitly we are dividing
work equally for the different construction crews. A “high-intensity” crew only has to cover a small
region, whereas a “low-intensity” crew has to cover a larger area. Through testing two different methods,
k-means and Gaussian mixture, we are able to select the unsupervised clustering method that gives the
better result: Gaussian mixture. Through perturbation analysis, we see that a ¢ = 0.1 perturbation in
priority score does not change the results of the Gaussian mixture clustering. Therefore, this method
is robust, at least to our perturbation tests. It also achieves the goal of contiguous regions, thus
minimizing the cost of construction.

The first weakness of our method of clustering is also its strength: using human modifications at
the end. Thus, this algorithm’s flow is not entirely automated. However, one can argue that this step is
necessary to achieve the optimal solution. Another weakness of this method is its sensitive dependence
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on the weight w. As seen above, a change in w can change the clustering results drastically. Thus, we
had to determined w experimentally. Again, this is another weakness because the process for finding
w is subjective and not automated.

9.3 Optimizing Slab Repair Costs

The most important strength of our analysis of the optimal strategy of slab repair is the rigorous
geometric argument for finding the good region and cuttable region. Using the result from the simplest
case of two slabs, we generalize the problem into an arbitrary number of slabs and propose two solution-
finding algorithms that have complexity O(N?).

The main weakness in the generalization of the two-slab case is the limited set of possible solutions
that are probed in our algorithms when compared to the full set of possible solutions. Thus, our
algorithms are not guaranteed to give the optimal solution, although it is significantly faster than the
naive approach which tests every single possible sequence of actions.

10 Conclusions & Future Work

In this work, we present solutions to several important problems that are central to improving Ithaca
sidewalks. First, we determine the factors affecting a sidewalk slab through physically motivated
models. We arrive at simplifying results to determine that the characteristic time scale of the slab is a
constant, with physical effects come in at the second order. From here, we determine the priority score
map of Ithaca. This map is the goal we sought for the first problem.

Then, we seek to cluster the data on a three-dimensional space, balancing between spatial coordi-
nates and priority score. We compare two methods of unsupervised clustering, and find that Gaussian
mixture gives the best results. We use a human-assisted approach: human validation at the last step is
necessary to optimize. Furthermore, we find contiguous regions for construction crews to travel. This
help minimize the cost since there is no need to charge the extra $1000 for long-distance moving.

In the last problem, we constrain the solution space to the problem of raising and cutting slabs
through a geometrically-based model inspired by concepts from special relativity. With this, we are able
to determine the possible ways to raise or cut a slab in relation to another slab while also complying
with the ADA. Armed with this solution space, we further present two O(n?) algorithms to find
approximated solutions to fixing sidewalks made up of N slabs.

Robustness analysis through perturbations of parameters, optimality of solutions, and discussion
of strengths and weaknesses are also included. Here, we show that our models are fairly robust: when
the priority map is perturbed up to o = 0.01, the clustering result does not change. Furthermore, the
algorithms presented to find solutions to fix an entire sidewalk are of polynomial-order time complexity,
in contrast to the brute force time complexity of O(3").

There are many venues for potential improvement of our models. In the first problem, having data of
trees around Ithaca in a more easily accessible format could help us model the effects of trees on specific
slabs and specific streets. In addition, having data of soil quality and type on each street in a more
easily accessible format would allow us to calculate the effects of stress due to the soil (e.g. differential
thermal expansion of the soil, effects on tree root growth) and consequently their effects on the lifetime
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of the sidewalk slabs. Given more time, we could have searched for a better solution-finding algorithm
that guarantees a stronger minimality of cost and better computational complexity. Furthermore, a
fully automated clustering algorithm that does not require manual alterations would be ideal for a more
refined, automated streamline workflow. Lastly, having more data in general (e.g. average number of
people at a bus stop over the course of a day, or greater resolution of Ithaca population data, etc.) would
allow us to calculate solutions with better resolution. With these improvements, we could accurately
cluster city blocks, and even propose the specific routes each construction crew should take!
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A Python Code

# Dang Pham, Calvin Chen, William Xu
# CMCM 2019, 18 November 2019

3 # this code creates ALL the plots shown in the paper

5 import networkx as nx

import numpy as np

import osmnx as o0X

import pandas as pd

from numpy import *

from matplotlib.pyplot import =

from sklearn.cluster import KMeans

from sklearn.mixture import GaussianMixture

ox.config(log_console=True, use_cache=True)

- gmapkey = ’AIzaSyD101zIRJx-3Ihn4omh-CY2SD0lahSnOEs’

7 ### DATA ###

#ithaca population map

ithaca_population_map = [

[ 600, 600, 0, 0, 0, o, o, 600, 200, 600, 600, 1000, 1000,
o],

[ 200, 600, 200, 0, 0, 200, 600, 1000, 600, 600, 0, 0, 0,
o],

[ 200, 200, 200, 0, 0, 600, 1000, 1000, 600, 200, 1000, 0, 0,
ol,

[ 600, 0, 200, 200, 0, 1000, 1000, 1000, 600, 600, 600, 0, 0,
o],

[ 600, 200, 600, 200, 600, 1000, 1000, 600, 1000, 600, 600, 600, 600,
ol,

[ 200, 200, 200, 200, 600, 1000, 1000, 600, 1000, 1000, 1000, 1000, 1000,

10007,

[ 200, 200, 0, 200, 0, 1000, 1000, 600, 1000, 600, 200, 600, 600,
0],
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[ 0, 200, 0, 1000, 0, 600, 1000, 1000, 600,

10001,

[ 0, 200, 0, 0, 0, 0, 1000, 0, 600,

200]
]
TOTAL_GOV_EMPLOYEES
TOTAL_GOV_BUILDINGS

303

]
o

ITHACA_HIGH_SCHOOL_POP = 1360
ALL_OTHER_SCHOOLS_POP = 400

36 PER_BUS_STOP_POPULATION = 30
» SLAB_LENGTH 4 #ft
FT_TO_METER 0.3048 #ft/meter

ithaca_map_x = 9
ithaca_map_y 14

ithaca_map_r0 (42.4613, -76.5216)
ithaca_map_rl = (42.4278, -76.47)

s ### END OF DATA ###

; ### BEGIN MAIN CODE ###

# get the street network for Ithaca
place = ’Ithaca’

200, 0, 600, 200,

600, 0, 0, 0,

place_query = {’city’:’Ithaca’, ’state’:’New York’, ’country’:’USA’}

G = ox.graph_from_place(place_query, network_type=’walk’,

# add elevation, calculate grade
5 G = ox.add_node_elevations (G, api_key=gmapkey)

56 G = ox.add_edge_grades (G)

simplify=True)

- edge_grades = [datal[’grade_abs’] for u, v, k, data in ox.get_undirected(G).edges(

keys=True, data=True)]
; G_proj = ox.project_graph(G)

# first plot, plot of ithaca

fig,ax = ox.plot_graph(G_proj)
> fig.savefig(’ithaca_streets.pdf’)

5 # get all the buildings of Ithaca

government_buildings = [’townhall’, ’courthouse’, ’police’,

fire_station’]
7 school_buildings = [’school’]

amenities_list = government_buildings + school_buildings
tags = {
’amenity’ amenities_list,
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73 >highway’ : ’bus_stop’

74 }

75 place_name = ’Ithaca, New York, USA’

76 gdf = ox.pois_from_place(place=place_name, tags=tags)

7¢ for gov_building in government_buildings:
79 TOTAL_GOV_BUILDINGS += len(gdf.loc[gdf[’amenity’] == gov_building])
so PER_GOV_POP = ceil (TOTAL_GOV_EMPLOYEES/TOTAL_GOV_BUILDINGS)

82 # get gov buildings
s3 gov_df = []
g4 for building in government_buildings:

85 temp_df = gdf.loc[gdf[’amenity’] == building]

86

87 for index, row in temp_df.iterrows():

88 if row[’geometry’].type == ’Point’:

89 y = row[’geometry’].x #Google maps convention, lat = y, lon = x,
opposite of OSM convention

90 x = row[’geometry’].y

91 elif row[’geometry’].type == ’Polygon’:

92 y = mean(row[’geometry’].exterior.coords.xy[0])

93 x = mean(row[’geometry’].exterior.coords.xy[1])

94 else:

95 raise ValueError

96 gov_df . append ({’type’: building, ’name’: Nome, ’x’: x, ’y’: y})
97 gov_df = pd.DataFrame (gov_df)

98

99 # get schools

100 school_df = []

101 for index, row in gdf.loc[gdf[’amenity’] == ’school’].iterrows():

102 if row[’geometry’].type == ’Point’:

103 y = row[’geometry’].x #Google maps convention, lat = y, lon = x, opposite
of OSM convention

104 x = row[’geometry’].y

105 elif row[’geometry’].type == ’Polygon’:

106 y = mean(row[’geometry’].exterior.coords.xy[0])

107 x = mean(row[’geometry’].exterior.coords.xy[1])

108 elif row[’geometry’].type == ’MultiPolygon’ and row[’name’] == ’Ithaca High
School’:

109 x = 42.455992

110 y = -76.498355

111 else:

112 raise ValueError

113 school_df .append({’type’: ’school’, ’name’: row[’name’], ’x’: x, ’y’: yl})

114 school_df = pd.DataFrame (school_df)

116 # get bus stops

117 bus_df = []

118 for index, row in gdf.loc[gdf[’highway’] == ’bus_stop’].iterrows():
119 if row[’geometry’].type == ’Point’:
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120

130

131

1:

w

2

133

160

161

162

163

164

165

166

self .day_population

def calculate_day_population(

total_school_population

for index,

if row[’name’]

total_school_population +=

else:

total_school_population +=

total_gov_population

total_bus_stops_population

self .day_population tot

total_bus_stops_population

# make ithaca map and populate it

(]

ithaca_delta_x

ithaca_map

abs (ithaca_map_r
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y = row[’geometry’].x #Google maps convention, lat = y, lon = x, opposite
of OSM convention
x = row[’geometry’].y
elif row[’geometry’].type == ’Polygon’:
y = mean(row[’geometry’].exterior.coords.xy[0])
x = mean(row[’geometry’].exterior.coords.xy[1])
else:
raise ValueError
bus_df .append ({’type’: ’bus_stop’, ’name’: Nome, ’x’: x, ’y’: y})
; bus_df = pd.DataFrame (bus_df)
all_dfs = {’gov’: gov_df, ’school’: school_df, ’bus_stop’:bus_df}
PER_BUS_STOP_POPULATION = 5
# Cell class for each Ithaca cell
class Cell:
def __init__(self, r0, rl, night_population = O, bus_stops = None, gov = None,
schools = None):
self . r0 = r0 #upper left corner coordinate r0O = (x0,y0)
self .rl = rl #lower right cormer coordinate
self .night_population = night_population
self .bus_stops = bus_stops
self .gov = gov
self.schools = schools
if self.bus_stops != None and self.gov != None and self.schools != None:

self.calculate_day_population ()
self):

0

row in self.schools.iterrows():
>Ithaca High School’:

ITHACA_HIGH_SCHOOL_POP

ALL_OTHER_SCHOOLS_POP

len(self.gov)*PER_GOV_POP

len(self.bus_stops)*PER_BUS_STOP_POPULATION

al_school_population+total_gov_population+

with buildings, bus stops, and populations

1[0] - ithaca_map_r0[0])/ithaca_map_x

32



2019 CMCM C. Chen, D. Pham, & W. Xu

167 ithaca_delta_y = abs(ithaca_map_r1[1] - ithaca_map_rO[1])/ithaca_map_y
168

160 for i in range(ithaca_map_x):

170 ithaca_map.append ([])

171 for j in range(ithaca_map_y):

173 cell_r0 = (ithaca_map_r0[0] - ixithaca_delta_x, ithaca_map_rO0[1] + j*
ithaca_delta_y) #upper left corner of the cell
174 cell_rl = (ithaca_map_r0[0] - (i+1)x*ithaca_delta_x, ithaca_map_rO0[1] + (j

+1)*ithaca_delta_y) #lower right corner

176 ithaca_map[i].append(Cell(night_population=ithaca_population_map[i]l[j], rO=
cell_r0, ri=cell_r1l))

177 ithaca_map = array(ithaca_map)

i7s ithaca_day_pop = zeros ((ithaca_map_x, ithaca_map_y))
170 for i in range(ithaca_map_x):

180 for j in range(ithaca_map_y):
181 cell_ij = ithaca_mapl[i,j]
182

183 cell _ij_x0 = cell_ij.r0[0]
154 cell_ij_x1 = cell_ij.r1[0]
185

186 cell_ij_y0 = cell_ij.rO0[1]
187 cell_ij_yl = cell_ij.r1[1]
188

189 no_of_bus = 0

190 no_of_schools = 0

191 no_of_gov = 0

192 for key, df in all_dfs.items():
193 temp_df = []
194 for _, row in df.iterrows () :

195 r = (row[’x’], rowl[’y’])

196 if cell_ij.r1[0] < r[0] < cell_ij.r0[O0]:

197 if cell_ij.rO[1] < r[1] < cell_ij.r1[1]:

108 temp_df .append ({’type’: row[’type’], ’name’: row[’name’], °’

x’: rowl[’x’], ’y’: rowl[’y’13})
199 temp_df = pd.DataFrame (temp_df)

200 if key == ’bus_stop’:

201 no_of_bus = temp_df

202 elif key == ’school’:

203 no_of_schools = temp_df
204 elif key == ’gov’:

205 no_of_gov = temp_df

206

207 cell_ij.bus_stops = no_of_bus
208 cell_ij.schools = no_of_schools
209 cell_ij.gov = no_of_gov

210 cell_ij.calculate_day_population ()
211 ithaca_day_pop[i,jl=cell_ij.day_population
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213 # plot the ithaca day population

214 fig, ax = subplots ()

215 ignore_points = [(2,0),(3,0),(4,0),(5,0),(3,1),(4,1),(3,2),(4,2),(13,0),(13,1)
,(13,2),(13,3) ,(13,4) ,(12,1) ,(12,2) ,(12,3) ,(11,1) ,(11,2) ,(11,3)]1]

216 added_pop = (30000 - sum(ithaca_day_pop))/(ithaca_map_x*ithaca_map_y - len(
ignore_points))

217 ithaca_day_pop = ithaca_day_pop + added_pop

219 for point in ignore_points:

220 cell_ij = ithaca_map[point[1], point [0]]

221 cell_ij.day_population = 0

222 ithaca_day_pop[point [1], point[0]] = cell_ij.day_population
223 for point in ignore_points:

224 scatter (point [0], point[1], c=’r’)

226 cbar = ax.imshow(ithaca_day_pop,vmin=0)

227 colorbar (cbar)

228 ax.set_xticks ([0.5+1i for i in range(14)])
220 ax.set_yticks ([0.5+1i for i in range(9)])
230 ax.set_xticklabels ([i for i in range (14)])
231 ax.set_yticklabels ([i for i in range(9)])
232 grid ()

233 title (’Ithaca Day Population’)

231 savefig(’day_population.pdf’)

235 show ()

237 # plot the ithaca night population

233 fig, ax = subplots ()

230 cbar = ax.imshow(ithaca_population_map ,vmin=0)
240 colorbar (cbar)

241 ax.set_xticks ([0.5+i for i in range(14)])
242 ax.set_yticks ([0.5+i for i in range(9)])
213 ax.set_xticklabels ([i for i in range(14)])
214 ax.set_yticklabels ([i for i in range(9)1]1)
245 grid ()

26 title (’Ithaca Night Population’)

247 savefig(’night_population.pdf’)

245 show ()

251 #calculate the number of slabs in a cell
252 for cell in ithaca_map.flatten():
253 cell.slabs = 0

255 lat_0 = ithaca_map[0,0].r0[0]
256 long_O0 = ithaca_map[0,0].r0[1]
257 lat_1 = ithaca_map[8,13].r1[0]
258 long_1 = ithaca_map[8,13].r1[1]
250 lat_sep = (lat_0 - lat_1)/9

260 long_sep = (long_1 - long_0)/14
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261

262 total_length = 0
263 all_slab_list = []
264

265 for u, v, k, data in ox.get_undirected(G).edges(keys=True, data=True):

267 lonl = G.nodes[datal[’from’]][’x’]
268 latl = G.nodes[data[’from’]][’y’]

270 lon2 = G.nodes[datal’to’]][’x’]
271 lat2 = G.nodes[datal[’to’]][’y’]

273 grade_abs datal[’grade_abs’]

275 orig_node datal[’from’]
276 target_node = datal[’to’]

278 length_in_meter = data[’length’]
279 length_in_feet = length_in_meter / FT_TO_METER

281 total_length += length_in_feet

283 no_of_slabs = length_in_feet/SLAB_LENGTH
284 all_slab_list.append(no_of_slabs)

286 coordinate_1 = (latl, lonl)

287 coordinate_2 = (lat2, lon2)

289 ind_x1 = (lat_0 - latl)//lat_sep

290 ind_y1 = (lonl - long_0)//long_sep

201 ind_x2 = (lat_0 - lat2)//lat_sep

292 ind_y2 = (lon2 - long_0)//long_sep

293

294 same_cell = np.array([ind_xl1-ind_x2,ind_yl-ind_y2])

295 if ind_x1 <= 8 and ind_x2 <= 8 and ind_yl <= 13 and ind_y2 <= 13:
296 if np.all(same_cell == 0):

297 ithaca_map[int (ind_x1) ,int(ind_y1)].slabs += no_of_slabs
298 elif sum(abs(same_cell)) == 1:

299 if abs(same_cell [0]) ==

300 max_x = max(ind_x1,ind_x2)

301 sep = ithaca_map[int(max_x),int(ind_y1)].r0[0]

302 ithaca_map[int (ind_x1),int(ind_y1)].slabs += no_of_slabs*abs ((latl
- sep)/(latl-1lat2))

303 ithaca_map[int (ind_x2) ,int(ind_y2)].slabs += no_of_slabsx*abs ((lat2
- sep)/(latl-lat2))

304 elif abs(same_cell[1]) ==

305 max_y = max(ind_yl,ind_y2)

306 sep = ithaca_map[int(ind_x1),int(max_y)].r0[1]

307 ithaca_map[int(ind_x1) ,int(ind_y1)].slabs += no_of_slabs*abs ((lonl
- sep)/(lonl-1on2))
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> ithaca_slabs

ithaca_map[int (ind_x2) ,int(ind_y2)].slabs += no_of_slabs*abs ((lon2
- sep)/(lonl-1on2))

ithaca_day = zeros((ithaca_map_x, ithaca_map_y))
ithaca_night = zeros((ithaca_map_x, ithaca_map_y))

zeros ((ithaca_map_x, ithaca_map_y))

for i in range(ithaca_map_x):
for j in range(ithaca_map_y):

ithaca_slabs[i,j] = ithaca_map[i,j].slabs
ithaca_day[i,j] = ithaca_mapl[i,j].day_population
ithaca_night[i,j] = ithaca_map[i,j].night_population

ithaca_priority = ithaca_slabs*(ithaca_day + ithaca_night)

# plot the ithaca priority score map

fig, ax = subplots ()
cbar=ax.imshow(ithaca_priority/np.max(ithaca_priority),vmin=0,vmax=1)
colorbar (cbar)

ax.set_xticks ([0.5+i for i in range (14)])

; ax.set_yticks ([0.5+1i for i in range(9)])

ax.set_xticklabels ([i for i in range (14)])
ax.set_yticklabels ([i for i in range(9)])
grid ()

fig.suptitle(’Ithaca Priority Score’)

fig.savefig(’ithaca_priority.pdf’)

# perform clustering
# make training data for clustering

7 training_data = []

for i in range(ithaca_map_x):
for j in range(ithaca_map_y):
training_data.append((i,j,100*ithaca_priority[i,j]))

# k-means first

kmeans = KMeans(n_clusters=4, random_state = 10).fit(training_data)

imshow (reshape (kmeans.labels_, (ithaca_map_x,ithaca_map_y)),cmap=’Accent’)
savefig (’kmeans.pdf’)

# now gmm

gmm = GaussianMixture(n_components=4, random_state=10) .fit_predict(training_data)
imshow (reshape (gmm, (ithaca_map_x,ithaca_map_y)),cmap=’Accent’)

savefig (’gmm_before.pdf’)

# gmm with human editing

gmm = GaussianMixture(n_components=4, random_state=10) .fit_predict(training_data)
gmm = reshape(gmm, (ithaca_map_x,ithaca_map_y))

gmm [6,12] = gmm[5,12]

gmm [6,3] = gmm[7,3]
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357 imshow (gmm , cmap=’Accent’)
5s savefig (’gmm_after.pdf’)

3

359

360 # perturbations of results

361

362 # plot the priority map for noise perturbations

363 for snr in [0,0.01,0.05,0.1]:

364 ithaca_priority_noise = ithaca_slabs*(ithaca_day + ithaca_night)*(l+random.
normal (loc=0, scale=snr, size=(ithaca_map_x, ithaca_map_y)))

365 imshow(ithaca_priority_noise,vmin=np.min(ithaca_priority), vmax=np.max(
ithaca_priority))

366 title(r’$\sigma=’ + str(snr) + ’$’°)

367 savefig (’priority_map_snr_{}.pdf’.format (snr))

368 show ()

370 # gmm clustering for noise perturbations in the priority score map

371 for snr in [0,0.01,0.05,0.1]:

372 training_data_noise = []

373 ithaca_priority_noise = ithaca_slabs*(ithaca_day + ithaca_night)*(l+random.
normal (loc=0, scale=0, size=(ithaca_map_x, ithaca_map_y)))

374 ithaca_priority_noise = ithaca_priority_noise/np.max(ithaca_priority_noise)

375 for i in range(ithaca_map_x):

376 for j in range(ithaca_map_y):

377 training_data_noise.append((i,j,100*ithaca_priority_noisel[i,j]))

379 gmm_noise = GaussianMixture(n_components=4, random_state=10).fit_predict(
training_data_noise)

380 gmm_noise = reshape(gmm_noise, (ithaca_map_x,ithaca_map_y))

381 imshow (gmm_noise ,cmap=’Accent’)

382 title(r’$\sigma=’ + str(snr) + ’$’°)

383 savefig (’gmm_snr_{}.pdf’.format (snr))

384 show ()

386 # changes in weights of priority map

3s7 ithaca_priority_scaled = ithaca_priority/np.max(ithaca_priority)
3ss for w in [0, 10, 50, 100, 1000]:
389 training_data_weights = []

390 for i in range(ithaca_map_x):

391 for j in range(ithaca_map_y):

392 training_data_weights.append ((i,j,w*xithaca_priority_scaled[i,j]))

393 gmm_weights = GaussianMixture(n_components=4, random_state=10).fit_predict(
training_data_weights)

394 gmm_weights = reshape(gmm_weights, (ithaca_map_x,ithaca_map_y))

395 title(r’$w={}$’.format (w))

396 imshow (gmm_weights, cmap=’Accent’)

397 savefig(’gmm_w_{}.pdf’.format (w))

398 show ()

399

400

01 #### END ######
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